5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 6
Jun.  2021
Turn off MathJax
Article Contents

Genomic insight into the divergence and adaptive potential of a forgotten landrace G. hirsutum L. purpurascens

doi: 10.1016/j.jgg.2021.04.009
Funds:

This work was supported by funding from the National Key Technology R&D Program, the Ministry of Science and Technology (2016YFD0100203, 2017FD0101601), and the crop germplasm conservation program of the ministry of Agriculture (2015NWB039).

  • Received Date: 2020-10-30
  • Accepted Date: 2021-04-11
  • Rev Recd Date: 2021-04-07
  • Publish Date: 2021-06-20
  • Wild progenitors are an excellent source for strengthening the genetic basis and accumulation of desirable variation lost because of directional selection and adaptation in modern cultivars. Here, we re-evaluate a landrace of Gossypium hirsutum, formerly known as Gossypium purpurascens. Our study seeks to understand the genomic structure, variation, and breeding potential of this landrace, providing potential insights into the biogeographic history and genomic changes likely associated with domestication. A core set of accessions, including current varieties, obsolete accessions, G. purpurascens, and other geographical landraces, are subjected to genotyping along with multilocation phenotyping. Population fixation statistics suggests a marked differentiation between G. purpurascens and three other groups, emphasizing the divergent genomic behavior of G. purpurascens. Phylogenetic analysis establishes the primitive nature of G. purpurascens, identifying it as a vital source of functional variation, the inclusion of which in the upland cotton (cultivated G. hirsutum) gene pool may broaden the genetic basis of modern cultivars. Genome-wide association results indicate multiple loci associated with domestication regions corresponding to flowering and fiber quality. Moreover, the conserved nature of G. purpurascens can also provide insights into the evolutionary process of G. hirsutum.

  • These authors contributed equally to this work.
  • loading
  • Alexander, D.H., Novembre, J., Lange, K., 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655-1664.
    Alonso, R., Onate-Sanchez, L., Weltmeier, F., Ehlert, A., Diaz, I., Dietrich, K., VicenteCarbajosa, J., Droge-Laser, W., 2009. A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation. Plant Cell 21, 1747-1761.
    Ahmed, H., Nazir, M.F., Pan, Z., Gong, W., Iqbal, M.S., He, S., Du, X., 2020. Genotyping by sequencing revealed QTL hotspots for trichome-based plant defense in Gossypium hirsutum. Genes 11, 368.
    Ali, M., Cheng, H., Soomro, M., Shuyan, L., Bilal Tufail, M., Nazir, M.F., Feng, X., Zhang, Y., Dongyun, Z., Limin, L., 2020. Comparative transcriptomic analysis to identify the genes related to delayed gland morphogenesis in Gossypium bickii. Genes 11, 472.
    Bolek, Y., El-Zik, K.M., Pepper, A.E., Bell, A.A., Magill, C.W., Thaxton, P.M., Reddy, O.U.K., 2005. Mapping of verticillium wilt resistance genes in cotton. Plant Sci. 168, 1581-1590.
    Browning, B.L., Browning, S.R., 2009. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet. 84, 210-223.
    Chen, Y.H., Gols, R., Benrey, B., 2015. Crop domestication and its impact on naturally selected trophic interactions. Annu. Rev. Entomol. 60, 35-58.
    Cowling, W., Buirchell, B., Falk, D., 2009. A model for incorporating novel alleles from the primary gene pool into elite crop breeding programs while reselecting major genes for domestication or adaptation. Crop Pasture Sci. 60, 1009-1015.
    d'Eeckenbrugge, C., Lacape, J.M., 2014. Distribution and differentiation of wild, feral, and cultivated populations of perennial upland cotton (Gossypium hirsutum L.) in mesoamerica and the caribbean. PLoS One 9, e107458.
    Dai, P., Sun, G., Jia, Y., Pan, Z., Tian, Y., Peng, Z., Li, H., He, S., Du, X., 2020. Extensive haplotypes are associated with population differentiation and environmental adaptability in Upland cotton (Gossypium hirsutum). Theor. Appl. Genet. 133, 3273-3285.
    Ding, M.Q., Ye, W.W., Lin, L.F., 2015. The hairless stem phenotype of cotton (Gossypium barbadense) is linked to a copia-like retrotransposon insertion in a Homeodomain-Leucine Zipper Gene (HD1). Genetics 201, 143-154.
    Du, X., Huang, G., He, S., Yang, Z., Sun, G., Ma, X., Li, N., Zhang, X., Sun, J., Liu, M., et al., 2018. Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nat. Genet. 50, 796-802.
    Esbroeck, G.V., Bowman, D.T., 1998. Cotton germplasm diversity and its Importance to cultivar development. J. Cotton Sci. 2, 121-129.
    Fang, L., Wang, Q., Hu, Y., Jia, Y., Chen, J., Liu, B., Zhang, Z., Guan, X., Chen, S., Zhou, B., 2017. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat. Genet. 49, 1089.
    Fosberg, F.R., 1959. Vegetation and flora of wake island. Atoll Res. Bull. 67, 1-20.
    Fryxell, P.A., 1965. Stages in the evolution of gossypium. Adv. Front. Plant Sci. 10, 31-56.
    Fryxell, P.A., 1966. Desert roses the wild cottons of Australia. Aust. Plants 3, 301-318.
    Fryxell, P.A., 1979. The Natural History of the Cotton Tribe (Malvaceae, Tribe Gossypieae). Texas western press, El Paso (Tex.).
    Fryxell, P.A., 1992. A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea 2, 108-116.
    Fryxell, P.A., Moran, R., 1963. Neglected form of Gossypium hirsutum on Socorro island, Mexico. Emp. Cotton Grow. Rev. 40, 289-291.
    Gaillard, C., Moatt, B.A., Blacker, M., Laloue, M., 1998. Male sterility associated with APRT deficiency APT1. Mol. Genet. Genom. 257, 348.
    Gallagher, J.P., Grover, C.E., Rex, K., Moran, M., Wendel, J.F., 2017. A new species of cotton from wake atoll, Gossypium stephensii (Malvaceae). Syst. Bot. 42, 115-123.
    Gong, Q., Yang, Z., Chen, E., Sun, G., He, S., Butt, H.I., Zhang, C., Zhang, X., Yang, Z., Du, X., et al., 2018. A Phi-class glutathione S-transferase gene for verticillium wilt resistance in Gossypium arboreum Identified in a genome-wide association study. Plant Cell Physiol. 59, 275-289.
    Guo, M., Liu, J.H., Ma, X., Luo, D.X., Gong, Z.H., Lu, M.H., 2016. The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front. Plant Sci. 7, 114.
    Hao, J., Tu, L., Hu, H., Tan, J., Deng, F., Tang, W., Nie, Y., Zhang, X., 2012. GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system. J. Exp. Bot. 63, 6267-6281.
    Harland, S., 1940. New polyploids in cotton by the use of colchicine. Trop. Agric. 17, 53-54.
    Harland, S.C., 1937. The genetics of cotton. XVⅡ. Increased mutability of a gene in G. purpurascens as a consequence of hybridization with G. hirsutum. J. Genet. 34, 153-168.
    He, S., Sun, G., Geng, X., Gong, W., Dai, P., Jia, Y., Shi, W., Pan, Z., Wang, J., Wang, L., 2021. The genomic basis of geographic differentiation and fiber improvement in cultivated cotton. Nat. Genet. 53, 916-924.
    He, S., Sun, G., Huang, L., Yang, D., Dai, P., Zhou, D., Wu, Y., Ma, X., Du, X., Wei, S., 2019. Genomic divergence in cotton germplasm related to maturity and heterosis. J. Integr. Plant Biol. 61, 929-942.
    He, S., Wang, P., Zhang, Y.-M., Dai, P., Nazir, M.F., Jia, Y., Peng, Z., Pan, Z., Sun, J., Wang, L., 2020. Introgression leads to genomic divergence and responsible for important traits in upland cotton. Front. Plant Sci. 11, 929.
    Hill, T.A., Broadhvest, J., Kuzoff, R.K., Gasser, C.S., 2006. Arabidopsis SHORT INTEGUMENTS 2 is a mitochondrial DAR GTPase. Genetics 174, 707-718.
    Hollister, J.D., 2015. Polyploidy: adaptation to the genomic environment. New Phytol. 205, 1034-1039.
    Hu, Y., Zhao, L., Chong, K., Wang, T., 2008. Overexpression of OsERF1, a novel rice ERF gene, up-regulates ethylene-responsive genes expression besides affects growth and development in Arabidopsis. J. Plant Physiol. 165, 1717-1725.
    Huang, C., Nie, X., Shen, C., You, C., Li, W., Zhao, W., Zhang, X., Lin, Z., 2017. Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs. Plant Biotechnol. J. 15, 1374-1386.
    Huang, X., Han, B., 2014. Natural variations and genome-wide association studies in crop plants. Annu. Rev. Plant Biol. 65, 531-551.
    Hufford, M.B., 2012. Comparative population genomics of maize domestication and improvement. Nat. Genet. 44, 808-811.
    Huson, D.H., Richter, D.C., Rausch, C., Dezulian, T., Franz, M., Rupp, R., 2007. Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinf. 8, 460.
    Hutchinson, J.B., Stephens, S.G., 1944. Note on the "French" or "small-seeded" cotton grown in the West Indies in the eighteenth century. Trop. Agric. 21.
    Jia, Y., Sun, J., Du, X., 2014. World Cotton Germplasm Resources; Cotton Germplasm Resources in China. Intech, Rijeka, Croatia.
    Kang, H.M., 2010. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348-353.
    Kuang, M., Wei, S., Wang, Y., Zhou, D., Ma, L., Fang, D., Yang, W., Ma, Z., 2016. Development of a core set of SNP markers for the identification of upland cotton cultivars in China. J. Integ. Agri. 15, 954-962.
    Lee, T.-H., Guo, H., Wang, X., Kim, C., Paterson, A.H., 2014. SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genom. 15, 1-6.
    Lehti-Shiu, M.D., Uygun, S., Moghe, G.D., Panchy, N., Fang, L., Hufnagel, D.E., Jasicki, H.L., Feig, M., Shiu, S.H., 2015. Molecular evidence for functional divergence and decay of a transcription factor derived from whole-genome duplication in Arabidopsis thaliana. Plant Physiol. 168, 1717-1734.
    Li, C., He, X., Luo, X., Xu, L., Liu, L., Min, L., Jin, L., Zhu, L., Zhang, X., 2014. Cotton WRKY1 mediates the plant defense-to-development transition during infection of cotton by Verticillium dahliae by activating JASMONATE ZIM-DOMAIN1 expression. Plant Physiol. 166, 2179-2194.
    Li, D., Dossa, K., Zhang, Y., Wei, X., Wang, L., Zhang, Y., Liu, A., Zhou, R., Zhang, X., 2018. GWAS uncovers differential genetic bases for drought and salt tolerances in sesame at the germination stage. Genes 9, 87.
    Li, H., Durbin, R., 2009. Fast and accurate short read alignment with BurrowsWheeler transform. Bioinformatics 25, 1754-1760.
    Li, H., Peng, Z., Yang, X., Wang, W., Fu, J., Wang, J., Han, Y., Chai, Y., Guo, T., Yang, N., 2013. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat. Genet. 45, 43-50.
    Li, M.X., Yeung, J.M.Y., Cherny, S.S., Sham, P.C., 2012. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum. Genet. 131, 747-756.
    Li, X.J., Li, M., Zhou, Y., Hu, S., Hu, R., Chen, Y., Li, X.B., 2015. Overexpression of cotton RAV1 gene in Arabidopsis confers transgenic plants high salinity and drought sensitivity. PLoS One 10, e0118056.
    Liu, D.X., Zhang, J., Liu, X.Y., Wang, W.W., Liu, D.J., Teng, Z.H., Fang, X.M., Tan, Z.Y., Tang, S.Y., Yang, J.H., et al., 2016. Fine mapping and RNA-Seq unravels candidate genes for a major QTL controlling multiple fiber quality traits at the T1 region in upland cotton. BMC Genom. 17, 1-13.
    Liu, R., Gong, J., Xiao, X., Zhang, Z., Li, J., Liu, A., Lu, Q., Shang, H., Shi, Y., Ge, Q., et al., 2018. GWAS analysis and QTL identification of fiber quality traits and yield components in upland cotton using enriched high-density SNP markers. Front. Plant Sci. 9, 1067.
    Liu, X., Teng, Z., Wang, J., Wu, T., Zhang, Z., Deng, X., Fang, X., Tan, Z., Ali, I., Liu, D., et al., 2017. Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton(Gossypium hirsutum L.). Mol. Genet. Genom. 292, 1281-1306.
    Long, L., Yang, W.-W., Liao, P., Guo, Y.-W., Kumar, A., Gao, W., 2019. Transcriptome analysis reveals differentially expressed ERF transcription factors associated with salt response in cotton. Plant Sci. 281, 72-81.
    Luan, M., Xu, M., Lu, Y., Zhang, Q., Zhang, L., Zhang, C., Fan, Y., Lang, Z., Wang, L., 2014. Family-wide survey of miR169s and NF-YAs and their expression profiles response to abiotic stress in maize roots. PLoS One 9, e91369.
    Ma, Q., Wang, N., Hao, P., Sun, H., Wang, C., Ma, L., Wang, H., Zhang, X., Wei, H., Yu, S., 2019. Genome-wide identification and characterization of TALE superfamily genes in cotton reveals their functions in regulating secondary cell wall biosynthesis. BMC Plant Biol. 19, 432.
    Ma, Z., He, S., Wang, X., Sun, J., Zhang, Y., Zhang, G., Wu, L., Li, Z., Liu, Z., Sun, G., et al., 2018. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat. Genet. 50, 803-813.
    May, O.L., Bowman, D.T., Calhoun, D.S., 1995. Genetic diversity of U.S. upland cotton cultivars released between 1980 and 1990. Crop Sci. 35, 1570-1574.
    McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., 2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303.
    Miryeganeh, M., Takayama, K., Tateishi, Y., Kajita, T., 2014. Long-distance dispersal by sea-drifted seeds has maintained the global distribution of Ipomoea pescaprae subsp. brasiliensis (Convolvulaceae). PLoS One 9, e91836.
    Nazir, M.F., Jia, Y., Ahmed, H., He, S., Iqbal, M.S., Sarfraz, Z., Ali, M., Feng, C., Raza, I., Sun, G., 2020. Genomic insight into differentiation and selection sweeps in the improvement of upland cotton. Plants 9, 711.
    Niu, E.L., Cai, C.P., Bao, J.H., Wu, S., Zhao, L., Guo, W.Z., 2018. Up-regulation of a homeodomain-leucine zipper gene HD-1 contributes to trichome initiation and development in cotton. J. Integ. Agri. 18, 361-371.
    Nonogaki, H., 2014. Seed dormancy and germination-emerging mechanisms and new hypotheses. Front. Plant Sci. 5, 233.
    Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A., Reich, D., 2006. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904-909.
    Purugganan, M.D., Fuller, D.Q., 2009. The nature of selection during plant domestication. Nature 457, 843-848.
    Qi, J., Liu, X., Shen, D., Miao, H., Xie, B., Li, X., Zeng, P., Wang, S., Shang, Y., Gu, X., et al., 2013. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat. Genet. 45, 1510-1515.
    Rahaman, M., Mamidi, S., Rahman, M., 2018. Genome-wide association study of heat stress-tolerance traits in spring-type Brassica napus L. under controlled conditions. Crop J 6, 115-125.
    Rana, M.K., Singh, V.P., Bhat, K.V., 2005. Assessment of genetic diversity in upland cotton (Gossypium hirsutum L.) breeding lines by using amplified fragment length polymorphism (AFLP) markers and morphological characteristics. Genet. Resour. Crop Evol. 52, 989-997.
    Salih, H., Gong, W., He, S., Sun, G., Sun, J., Du, X., 2016. Genome-wide characterization and expression analysis of MYB transcription factors in Gossypium hirsutum. BMC Genet. 17, 129.
    Salih, H., Odongo, M.R., Gong, W., He, S., Du, X., 2019. Genome-wide analysis of cotton C2H2-zinc finger transcription factor family and their expression analysis during fiber development. BMC Plant Biol. 19, 400.
    Santos-Mendoza, M., Dubreucq, B., Baud, S., Parcy, F., Caboche, M., Lepiniec, L., 2008. Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J. 54, 608-620.
    Sarfraz, Z., Iqbal, M.S., Pan, Z., Jia, Y., He, S., Wang, Q., Qin, H., Liu, J., Liu, H., Yang, J., et al., 2018. Integration of conventional and advanced molecular tools to track footprints of heterosis in cotton. BMC Genom. 19, 1-19.
    Sarfraz, Z., Iqbal, M.S., Geng, X., Iqbal, M.S., Nazir, M.F., Ahmed, H., He, S., Jia, Y., Pan, Z., Sun, G., 2021. GWAS mediated elucidation of heterosis for metric traits in cotton (Gossypium hirsutum L.) across multiple environments. Front. Plant Sci. 12, 566.
    Stephens, S., 1966. Potentiality for long range oceanic dispersal of cotton seeds. Am. Nat. 100, 199-210.
    Stephens, S.G., 1958. Salt water tolerance of seeds of Gossypium species as a possible factor in seed dispersal. Am. Nat. 92, 83-92.
    Stephens, S.G., 1963. Polynesian cottons. Ann. Mo. Bot. Gard. 50, 1-22.
    Stephens, S.G., 1977. Seed fibre colour in gossypium and its possible significance in the evolution of domesticated cottons. J. Genet. 63, 63-77.
    Su, J., Li, L., Pang, C., Wei, H., Wang, C., Song, M., Wang, H., Zhao, S., Zhang, C., Mao, G., et al., 2016. Two genomic regions associated with fiber quality traits in Chinese upland cotton under apparent breeding selection. Sci. Rep. 6, 38496.
    Tajima, F., 1983. Evolutionary relationship of DNA sequence in finite populations. Genetics 105, 437-460.
    Tanaka, O., Takimoto, A., 1978. Effect of nitrate concentration in the medium on the flowering of Lemna paucicostata. Plant Cell Physiol. 19, 701-704.
    Tang, S., Teng, Z., Zhai, T., 2015. Construction of genetic map and QTL analysis of fiber quality traits for upland cotton (Gossypium hirsutum L.). Euphytica 201, 195-213.
    Tyagi, P., Gore, M.A., Bowman, D.T., Campbell, B.T., Udall, J.A., Kuraparthy, V., 2014. Genetic diversity and population structure in the US Upland cotton (Gossypium hirsutum L.). Theor. Appl. Genet. 127, 283-295.
    Varshney, R.K., Saxena, R.K., Upadhyaya, H.D., Khan, A.W., Yu, Y., Kim, C., Rathore, A., Kim, D., Kim, J., An, S., et al., 2017. Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nat. Genet. 49, 1082-1088.
    Wang, B., Guo, W., Zhu, X., 2006. QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton. Euphytica 152, 367-378.
    Wang, M., Tu, L., Lin, M., Lin, Z., Wang, P., Yang, Q., Ye, Z., Shen, C., Li, J., Zhang, L., et al., 2017. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat. Genet. 49, 579-587.
    Wang, P., Zhu, Y., Song, X., Cao, Z., Ding, Y., Liu, B., Zhu, X., Wang, S., Guo, W., Zhang, T., 2012. Inheritance of long staple fiber quality traits of Gossypium barbadense in G. hirsutum background using CSILs. Theor. Appl. Genet. 124, 1415-1428.
    Wang, X., Lu, X., Malik, W.A., Chen, X., Wang, J., Wang, D., Wang, S., Chen, C., Guo, L., Ye, W., 2020. Differentially expressed bZIP transcription factors confer multi-tolerances in Gossypium hirsutum L. Int. J. Biol. Macromol. 146, 569-578.
    Watt, G., 1927. Gossypium. Bull. Misc. Inf. 8, 321-356.
    Watt, S.G., 1907. The Wild and Cultivated Cotton of the World. Longmans, green and Co., London, London.
    Wendel, J.F., Brubaker, C.L., Percival, A.E., 1992. Genetic diversity in Gossypium hirsutum and the origin of upland cotton. Am. J. Bot. 79, 1291-1310.
    Wu, D., Liang, Z., Yan, T., Xu, Y., Xuan, L., Tang, J., Zhou, G., Lohwasser, U., Hua, S., Wang, H., et al., 2019. Whole-genome resequencing of a worldwide collection of rapeseed accessions reveals the genetic basis of ecotype divergence. Mol. Plant 12, 30-43.
    Xu, M., Jiang, L., Zhu, S., Zhou, C., Ye, M., Mao, K., Sun, L., Su, X., Pan, H., Zhang, S., et al., 2016. A computational framework for mapping the timing of vegetative phase change. New Phytol. 211, 750-760.
    Xu, X., Liu, X., Ge, S., Jensen, J.D., Hu, F., Li, X., Dong, Y., Gutenkunst, R.N., Fang, L., Huang, L., et al., 2011. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat. Biotechnol. 30, 105-111.
    Xu, Y.-H., Wang, J.-W., Wang, S., Wang, J.-Y., Chen, X.-Y., 2004. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-δ-cadinene synthase-A. Plant Physiol. 135, 507-515.
    Yan, Q., Liu, H.S., Yao, D., Li, X., Chen, H., Dou, Y., Wang, Y., Pei, Y., Xiao, Y.H., 2015. The basic/helix-loop-helix protein family in Gossypium: reference genes and their evolution during tetraploidization. PLoS One 10, e0126558.
    Yanagisawa, S., 2014. Transcription factors involved in controlling the expression of nitrate reductase genes in higher plants. PLant Sci. 229, 167-171.
    Yang, Z., Ge, X., Yang, Z., Qin, W., Sun, G., Wang, Z., Li, Z., Liu, J., Wu, J., Wang, Y., 2019. Extensive intraspecific gene order and gene structural variations in upland cotton cultivars. Nat. Commun. 10, 1-13.
    Yu, J.Z., Fang, D.D., Kohel, R.J., Ulloa, M., Hinze, L.L., Percy, R.G., Zhang, J., Chee, P., Scheffler, B.E., Jones, D.C., 2012. Development of a core set of SSR markers for the characterization of Gossypium germplasm. Euphytica 187, 203-213.
    Yuan, D., Grover, C.E., Hu, G., Pan, M., Miller, E.R., Conover, J.L., Hunt, S.P., Udall, J.A., Wendel, J.F., 2021. Parallel and intertwining threads of domestication in allopolyploid cotton. Adv. Sci. 2003634.
    Zhai, S., Liu, J., Xu, D., Wen, W., Yan, J., Zhang, P., Wan, Y., Cao, S., Hao, Y., Xia, X., et al., 2018. A genome-wide association study reveals a rich genetic architecture of flour color-related traits in bread wheat. Front. Plant Sci. 9, 1136.
    Zhang, B., Liu, J., Yang, Z.E., Chen, E.Y., Zhang, C.J., Zhang, X.Y., Li, F.G., 2018a. Genome-wide analysis of GRAS transcription factor gene family in Gossypium hirsutum L. BMC Genom. 19, 348.
    Zhang, C., Guinel, F.C., Moffatt, B.A., 2002. A comparative ultrastructural study of pollen development in APT1. Phytoplasma 219, 59-71.
    Zhang, C., Zhao, X., Qu, Y., Teng, W., Qiu, L., Zheng, H., Wang, Z., Han, Y., Li, W., 2019a. Loci and candidate genes in soybean that confer resistance to Fusarium graminearum. Theor. Appl. Genet. 132, 431-441.
    Zhang, J., Huang, G.Q., Zou, D., Yan, J.Q., Li, Y., Hu, S., Li, X.B., 2018b. The cotton(Gossypium hirsutum) NAC transcription factor (FSN1) as a positive regulator participates in controlling secondary cell wall biosynthesis and modification of fibers. New Phytol. 217, 625-640.
    Zhang, S., Li, G., Wang, Y., Meng, Q., Wei, Z., Hua, J., 2004. Gossypium hirsutum var. purpurascens Poir flowering needed 10 hours short-day treatment for at least 30 days in Wuhan and its germplasmic introgression towards upland cotton. Annual meeting of China Cotton Society, Wuhan, China.
    Zhang, W., Tan, L., Sun, H., Zhao, X., Liu, F., Cai, H., Fu, Y., Sun, X., Gu, P., Zhu, Z., 2019b. Natural variations at TIG1 encoding a TCP transcription factor contribute to plant architecture domestication in rice. Mol. Plant 12, 1075-1089.
    Zhang, Y.M., Zhang, S.Z., Zheng, C.C., 2014. Genomewide analysis of LATERAL ORGAN BOUNDARIES Domain gene family in Zea mays. J. Genet. 93, 79-91.
    Zhou,Z., Jiang, Y., Wang, Z., Gou,Z., Lyu,J., Li, W., Yu, Y., Shu,L., Zhao,Y., Ma, Y., etal., 2015. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 33, 408-414.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (382) PDF downloads (27) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return