Aceituno, F.F., Moseyko, N., Rhee, S.Y., Gutierrez, R.A., 2008. The rules of gene expression in plants:organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana. BMC Genom. 9, 438.
|
Ahringer, J., 2000. NuRD and SIN3:histone deacetylase complexes in development. Trends Genet. 16, 351-356.
|
Aichinger, E., Villar, C.B., Di Mambro, R., Sabatini, S., Köhler, C., 2011. The CHD3 chromatin remodeler PICKLE and polycomb group proteins antagonistically regulate meristem activity in the Arabidopsis root. Plant Cell 23, 1047-1060.
|
Alexandre, C., Möller-Steinbach, Y., Schönrock, N., Gruissem, W., Hennig, L., 2009. Arabidopsis MSI1 is required for negative regulation of the response to drought stress. Mol. Plant 2, 675-687.
|
Allfrey, V.G., Faulkner, R., Mirsky, A., 1964. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. U.S. A. 51, 786.
|
Aufsatz, W., Stoiber, T., Rakic, B., Naumann, K., 2007. Arabidopsis histone deacetylase 6:a green link to RNA silencing. Oncogene 26, 5477-5488.
|
Aufsatz, W., Mette, M.F., Winden, J.v.d., Matzke, M., Matzke, A.J.M., 2002. HDA6, a putative histone deacetylase needed to enhance DNA methylation induced by double-stranded RNA. EMBO J. 21, 6832-6841.
|
Balciunaite, E., Spektor, A., Lents, N.H., Cam, H., te Riele, H., Scime, A., Rudnicki, M.A., Young, R., Dynlacht, B.D., 2005. Pocket protein complexes are recruited to distinct targets in quiescent and proliferating cells. Mol. Cell Biol. 25, 8166-8178.
|
Barber, B.A., Rastegar, M., 2010. Epigenetic control of Hox genes during neurogenesis, development, and disease. Ann. Anat. 192, 261-274.
|
Boyer, L.A., Latek, R.R., Peterson, C.L., 2004. The SANT domain:a unique histonetail-binding module? Nat. Rev. Mol. Cell Biol. 5, 158-163.
|
Brownell, J.E., Zhou, J., Ranalli, T., Kobayashi, R., Edmondson, D.G., Roth, S.Y., Allis, C.D., 1996. Tetrahymena histone acetyltransferase A:a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84, 843-851.
|
Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walther, T.C., Olsen, J.V., Mann, M., 2009. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834-840.
|
Clough, S.J., Bent, A.F., 1998. Floral dip:a simplified method for Agrobacteriummediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.
|
Denslow, S., Wade, P., 2007. The human Mi-2/NuRD complex and gene regulation. Oncogene 26, 5433-5438.
|
Derkacheva, M., Steinbach, Y., Wildhaber, T., Mozgova, I., Mahrez, W., Nanni, P., Bischof, S., Gruissem, W., Hennig, L., 2013. Arabidopsis MSI1 connects LHP1 to PRC2 complexes. EMBO J. 32, 2073-2085.
|
Earley, K., Lawrence, R.J., Pontes, O., Reuther, R., Enciso, A.J., Silva, M., Neves, N., Gross, M., Viegas, W., Pikaard, C.S., 2006. Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance. Genes Dev. 20, 1283-1293.
|
Fleischer, T.C., Yun, U.J., Ayer, D.E., 2003. Identification and characterization of three new components of the mSin3A corepressor complex. Mol. Cell Biol. 23, 3456-3467.
|
Fukaki, H., Taniguchi, N., Tasaka, M., 2006. PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation. Plant J. 48, 380-389.
|
Glozak, M.A., Sengupta, N., Zhang, X., Seto, E., 2005. Acetylation and deacetylation of non-histone proteins. Gene 363, 15-23.
|
Gregoretti, I., Lee, Y.-M., Goodson, H.V., 2004. Molecular evolution of the histone deacetylase family:functional implications of phylogenetic analysis. J. Mol. Biol. 338, 17-31.
|
Grozinger, C.M., Schreiber, S.L., 2002. Deacetylase enzymes-biological functions and the use of small-molecule inhibitors. Chem. Biol. 9, 3-16.
|
Gu, X., Jiang, D., Yang, W., Jacob, Y., Michaels, S.D., He, Y., 2011. Arabidopsis homologs of retinoblastoma-associated protein 46/48 associate with a histone deacetylase to act redundantly in chromatin silencing. PLoS Genet. 7, e1002366.
|
Haigis, M.C., Guarente, L.P., 2006. Mammalian sirtuinsd-merging roles in physiology, aging, and calorie restriction. Genes Dev. 20, 2913-2921.
|
Hayakawa, T., Nakayama, J.-i., 2011. Physiological roles of class I HDAC complex and histone demethylase. J. Biomed. Biotechnol. 2011, 129383.
|
Hendrich, B., Bird, A., 1998. Identification and characterization of a family of mammalian methyl CpG-binding proteins. Genet. Res. 72, 59-72.
|
Hendrich, B., Tweedie, S., 2003. The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet. 19, 269-277.
|
Hennig, L., Bouveret, R., Gruissem, W., 2005. MSI1-like proteins:an escort service for chromatin assembly and remodeling complexes. Trends Cell Biol. 15, 295-302.
|
Hennig, L., Taranto, P., Walser, M., Schönrock, N., Gruissem, W., 2003. Arabidopsis MSI1 is required for epigenetic maintenance of reproductive development. Development 130, 2555-2565.
|
Hollender, C., Liu, Z., 2008. Histone deacetylase genes in Arabidopsis development. J. Integr. Plant Biol. 50, 875-885.
|
Huang, F., Yuan, W.Y., Tian, S., Zheng, Q.J., He, Y., 2019. SIN3 LIKE genes mediate long-day induction of flowering but inhibit the floral transition in short days through histone deacetylation in Arabidopsis. Plant J. 100, 101-113.
|
Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Wang, X.-F., Yao, T.-P., 2002. HDAC6 is a microtubule-associated deacetylase. Nature 417, 455-458.
|
Hung, F.Y., Chen, F.F., Li, C., Chen, C., Chen, J.H., Cui, Y., Wu, K., 2019. The LDL1/2-HDA6 histone modification complex interacts with TOC1 and regulates the core circadian clock components in Arabidopsis. Front. Plant Sci. 10, 233.
|
Hung, F.Y., Chen, F.F., Li, C., Chen, C., Lai, Y.C., Chen, J.H., Cui, Y., Wu, K., 2018. The Arabidopsis LDL1/2-HDA6 histone modification complex is functionally associated with CCA1/LHY in regulation of circadian clock genes. Nucleic Acids Res. 46, 10669-10681.
|
Itoh, T., Fairall, L., Muskett, F.W., Milano, C.P., Watson, P.J., Arnaudo, N., Saleh, A., Millard, C.J., El-Mezgueldi, M., Martino, F., 2015. Structural and functional characterization of a cell cycle associated HDAC1/2 complex reveals the structural basis for complex assembly and nucleosome targeting. Nucleic Acids Res. 43, 2033-2044.
|
Iwahara, J., Clubb, R.T., 1999. Solution structure of the DNA binding domain from Dead ringer, a sequence-specific AT-rich interaction domain (ARID). EMBO J. 18, 6084-6094.
|
Iwahara, J., Iwahara, M., Daughdrill, G.W., Ford, J., Clubb, R.T., 2002. The structure of the Dead ringereDNA complex reveals how AT-rich interaction domains(ARIDs) recognize DNA. EMBO J. 21, 1197-1209.
|
Jing, Y., Zhang, D., Wang, X., Tang, W., Wang, W., Huai, J., Xu, G., Chen, D., Li, Y., Lin, R., 2013. Arabidopsis chromatin remodeling factor PICKLE interacts with transcription factor HY5 to regulate hypocotyl cell elongation. Plant Cell 25, 242-256.
|
Karasov, T.L., Chae, E., Herman, J.J., Bergelson, J., 2017. Mechanisms to mitigate the trade-off between growth and defense. Plant Cell 29, 666-680.
|
Kasten, M.M., Dorland, S., Stillman, D.J., 1997. A large protein complex containing the yeast Sin3p and Rpd3p transcriptional regulators. Mol. Cell Biol. 17, 4852-4858.
|
Kaya, H., Shibahara, K.-i., Taoka, K.-i., Iwabuchi, M., Stillman, B., Araki, T., 2001. FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems. Cell 104, 131-142.
|
Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., D'Angelo, C., Bornberg-Bauer, E., Kudla, J., Harter, K., 2007. The AtGenExpress global stress expression data set:protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J. 50, 347-363.
|
Kim, D., Paggi, J.M., Park, C., Bennett, C., Salzberg, S.L., 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907-915.
|
Kim, J.M., To, T.K., Matsui, A., Tanoi, K., Kobayashi, N.I., Matsuda, F., Habu, Y., Ogawa, D., Sakamoto, T., Matsunaga, S., et al., 2017. Acetate-mediated novel survival strategy against drought in plants. Nat. Plants 3, 17097.
|
Kim, Y.J., Wang, R.Z., Gao, L., Li, D.M., Xu, C., Mang, H., Jeon, J., Chen, X.S., Zhong, X.H., Kwak, J.M., et al., 2016. POWERDRESS and HDA9 interact and promote histone H3 deacetylation at specific genomic sites in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 113, 14858-14863.
|
Köhler, C., Hennig, L., Bouveret, R., Gheyselinck, J., Grossniklaus, U., Gruissem, W., 2003. Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J. 22, 4804-4814.
|
Krueger, F., Andrews, S.R., 2011. Bismark:a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571-1572.
|
Kurita, K., Sakamoto, Y., Naruse, S., Matsunaga, T.M., Arata, H., Higashiyama, T., Habu, Y., Utsumi, Y., Utsumi, C., Tanaka, M., et al., 2019. Intracellular localization of histone deacetylase HDA6 in plants. J. Plant Res. 132, 629-640.
|
Kuzmichev, A., Zhang, Y., Erdjument-Bromage, H., Tempst, P., Reinberg, D., 2002. Role of the Sin3-histone deacetylase complex in growth regulation by the candidate tumor suppressor p33(ING1). Mol. Cell Biol. 22, 835-848.
|
Lai, A., Kennedy, B.K., Barbie, D.A., Bertos, N.R., Yang, X.J., Theberge, M.-C., Tsai, S.-C., Seto, E., Zhang, Y., Kuzmichev, A., 2001. RBP1 recruits the mSIN3-histone deacetylase complex to the pocket of retinoblastoma tumor suppressor family proteins found in limited discrete regions of the nucleus at growth arrest. Mol. Cell Biol. 21, 2918-2932.
|
Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357.
|
Lee, J.R., Lee, S.S., Jang, H.H., Lee, Y.M., Park, J.H., Park, S.-C., Moon, J.C., Park, S.K., Kim, S.Y., Lee, S.Y., 2009. Heat-shock dependent oligomeric status alters the function of a plant-specific thioredoxin-like protein, AtTDX. Proc. Natl. Acad. Sci. U. S. A. 106, 5978-5983.
|
Liao, Y., Smyth, G.K., Shi, W., 2014. featureCounts:an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930.
|
Lin, J., Hung, F.-Y., Ye, C., Hong, L., Shih, Y.-H., Wu, K., Li, Q.Q., 2020. HDA6-dependent histone deacetylation regulates mRNA polyadenylation in Arabidopsis. Genome Res. 30, 1407-1417.
|
Lin, Y.-y., Lu, J.-y., Zhang, J., Walter, W., Dang, W., Wan, J., Tao, S.-C., Qian, J., Zhao, Y., Boeke, J.D., 2009. Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell 136, 1073-1084.
|
Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K., 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391-1406.
|
Liu, X., Yu, C.-W., Duan, J., Luo, M., Wang, K., Tian, G., Cui, Y., Wu, K., 2012. HDA6 directly interacts with DNA methyltransferase MET1 and maintains transposable element silencing in Arabidopsis. Plant Physiol. 158, 119-129.
|
Luo, J., Su, F., Chen, D., Shiloh, A., Gu, W., 2000. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408, 377-381.
|
Luo, M., Wang, Y.-Y., Liu, X., Yang, S., Lu, Q., Cui, Y., Wu, K., 2012a. HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. J. Exp. Bot. 63, 3297-3306.
|
Luo, M., Yu, C.W., Chen, F.F., Zhao, L., Tian, G., Liu, X., Cui, Y., Yang, J.Y., Wu, K., 2012b. Histone deacetylase HDA6 is functionally associated with AS1 in repression of KNOX genes in Arabidopsis. PLoS Genet. 8, e1003114.
|
Lusser, A., Brosch, G., Loidl, A., Haas, H., Loidl, P., 1997. Identification of maize histone deacetylase HD2 as an acidic nucleolar phosphoprotein. Science 277, 88-91.
|
Mayer, K.S., Chen, X.S., Sanders, D., Chen, J.N., Jiang, J.J., Nguyen, P., Scalf, M., Smith, L.M., Zhong, X.H., 2019. HDA9-PWR-HOS15 is a ccore histone deacetylase complex regulating transcription and development. Plant Physiol. 180, 342-355.
|
Mehdi, S., Derkacheva, M., Ramstrom, M., Kralemann, L., Bergquist, J., Hennig, L., 2016. The WD40 domain protein MSI1 functions in a histone deacetylase complex to fine-tune abscisic acid signaling. Plant Cell 28, 42-54.
|
Murfett, J., Wang, X.-J., Hagen, G., Guilfoyle, T.J., 2001. Identification of Arabidopsis histone deacetylase HDA6 mutants that affect transgene expression. Plant Cell 13, 1047-1061.
|
Nakashima, K., Ito, Y., Yamaguchi-Shinozaki, K., 2009. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 149, 88-95.
|
New, M., Olzscha, H., La Thangue, N.B., 2012. HDAC inhibitor-based therapies:can we interpret the code? Mol. Oncol. 6, 637-656.
|
Ning, Y.Q., Chen, Q., Lin, R.N., Li, Y.Q., Li, L., Chen, S., He, X.J., 2019. The HDA19 histone deacetylase complex is involved in the regulation of flowering time in a photoperiod-dependent manner. Plant J. 98, 448-464.
|
Ogas, J., Cheng, J.-C., Sung, Z.R., Somerville, C., 1997. Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant. Science 277, 91-94.
|
Park, H.J., Baek, D., Cha, J.Y., Liao, X.J., Kang, S.H., McClung, C.R., Lee, S.Y., Yun, D.J., Kim, W.Y., 2019. HOS15 interacts with the histone deacetylase HDA9 and the evening complex to epigenetically regulate the floral activator GIGANTEA. Plant Cell 31, 37-51.
|
Perrella, G., Lopez-Vernaza, M.A., Carr, C., Sani, E., Gosselé, V., Verduyn, C., Kellermeier, F., Hannah, M.A., Amtmann, A., 2013. Histone deacetylase complex1 expression level titrates plant growth and abscisic acid sensitivity in Arabidopsis. Plant Cell 25, 3491-3505.
|
Pontvianne, F., Blevins, T., Chandrasekhara, C., Mozgová, I., Hassel, C., Pontes, O.M., Tucker, S., Mokroš, P., Muchová, V., Fajkus, J., 2013. Subnuclear partitioning of rRNA genes between the nucleolus and nucleoplasm reflects alternative epiallelic states. Genes Dev. 27, 1545-1550.
|
Ramírez, F., Ryan, D.P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S., Dündar, F., Manke, T., 2016. deepTools2:a next generation web server for deepsequencing data analysis. Nucleic Acids Res. 44, W160-W165.
|
Rayman, J.B., Takahashi, Y., Indjeian, V.B., Dannenberg, J.-H., Catchpole, S., Watson, R.J., te Riele, H., Dynlacht, B.D., 2002. E2F mediates cell cycledependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex. Genes Dev. 16, 933-947.
|
Robinson, M.D., McCarthy, D.J., Smyth, G.K., 2010. edgeR:a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140.
|
Rundlett, S.E., Carmen, A.A., Kobayashi, R., Bavykin, S., Turner, B.M., Grunstein, M., 1996. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc. Natl. Acad. Sci. U. S. A. 93, 14503-14508.
|
Saito, M., Ishikawa, F., 2002. The mCpG-binding domain of human MBD3 does not bind to mCpG but interacts with NuRD/Mi2 components HDAC1 and MTA2. J. Biol. Chem. 277, 35434-35439.
|
Sang, S., Chen, Y., Yang, Q., Wang, P., 2017. Arabidopsis inositol polyphosphate multikinase delays flowering time through mediating transcriptional activation of Flowering Locus C. J. Exp. Bot. 68, 5787-5800.
|
Seto, E., Yoshida, M., 2014. Erasers of histone acetylation:the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 6, a018713.
|
Silverstein, R.A., Ekwall, K., 2005. Sin3:a flexible regulator of global gene expression and genome stability. Curr. Genet. 47, 1-17.
|
Skowyra, D., Zeremski, M., Neznanov, N., Li, M., Choi, Y., Uesugi, M., Hauser, C.A., Gu, W., Gudkov, A.V., Qin, J., 2001. Differential association of products of alternative transcripts of the candidate tumor suppressor ING1 with the mSin3/HDAC1 transcriptional corepressor complex. J. Biol. Chem. 276, 8734-8739.
|
Strahl, B.D., Allis, C.D., 2000. The language of covalent histone modifications. Nature 403, 41-45.
|
Stroud, H., Greenberg, M.V., Feng, S., Bernatavichute, Y.V., Jacobsen, S.E., 2013. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352-364.
|
Tan, L.M., Liu, R., Gu, B.W., Zhang, C.J., Luo, J., Guo, J., Wang, Y., Chen, L., Du, X., Li, S., 2020. Dual recognition of H3K4me3 and DNA by the ISWI component ARID5 regulates the floral transition in Arabidopsis. Plant Cell 32, 2178-2195.
|
Tan, L.M., Zhang, C.J., Hou, X.M., Shao, C.R., Lu, Y.J., Zhou, J.X., Li, Y.Q., Li, L., Chen, S., He, X.J., 2018. The PEAT protein complexes are required for histone deacetylation and heterochromatin silencing. EMBO J. 37, e98770.
|
Tanaka, M., Kikuchi, A., Kamada, H., 2008. The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol. 146, 149-161.
|
Taunton, J., Hassig, C.A., Schreiber, S.L., 1996. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408-411.
|
To, T.K., Kim, J.M., Matsui, A., Kurihara, Y., Morosawa, T., Ishida, J., Tanaka, M., Endo, T., Kakutani, T., Toyoda, T., et al., 2011. Arabidopsis HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1. PLoS Genet. 7, e1002055.
|
Ueda, M., Matsui, A., Tanaka, M., Nakamura, T., Abe, T., Sako, K., Sasaki, T., Kim, J.M., Ito, A., Nishino, N., et al., 2017. The distinct roles of class I and II RPD3-like histone deacetylases in ssalinity stress response. Plant Physiol. 175, 1760-1773.
|
Wang, L., Rajan, H., Pitman, J.L., McKeown, M., Tsai, C.-C., 2006. Histone deacetylase-associating Atrophin proteins are nuclear receptor corepressors. Genes Dev. 20, 525-530.
|
Wang, Z., Cao, H., Sun, Y., Li, X., Chen, F., Carles, A., Li, Y., Ding, M., Zhang, C., Deng, X., et al., 2013. Arabidopsis paired amphipathic helix proteins SNL1 and SNL2 redundantly regulate primary seed dormancy via abscisic acid-ethylene antagonism mediated by histone deacetylation. Plant Cell 25, 149-166.
|
Wang, Z., Chen, F., Li, X., Cao, H., Ding, M., Zhang, C., Zuo, J., Xu, C., Xu, J., Deng, X., 2016. Arabidopsis seed germination speed is controlled by SNL histone deacetylase-binding factor-mediated regulation of AUX1. Nat. Commun. 7, 1-14.
|
Wang, Z.-P., Xing, H.-L., Dong, L., Zhang, H.-Y., Han, C.-Y., Wang, X.-C., Chen, Q.-J., 2015. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol. 16, 144.
|
Wu, K., Zhang, L., Zhou, C., Yu, C.W., Chaikam, V., 2008. HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J. Exp. Bot. 59, 225-234.
|
Wu, R.-C., Jiang, M., Beaudet, A.L., Wu, M.-Y., 2013. ARID4A and ARID4B regulate male fertility, a functional link to the AR and RB pathways. Proc. Natl. Acad. Sci. U. S. A. 110, 4616-4621.
|
Xue, Y., Wong, J., Moreno, G.T., Young, M.K., Côté, J., Wang, W., 1998. NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol. Cell 2, 851-861.
|
Yang, J., Yuan, L., Yen, M.R., Zheng, F., Ji, R., Peng, T., Gu, D., Yang, S., Cui, Y., Chen, P.Y., Wu, K., Liu, X., 2020. SWI3B and HDA6 interact and are required for transposon silencing in Arabidopsis. Plant J. 102, 809-822.
|
Yang, R., Zheng, Z., Chen, Q., Yang, L., Huang, H., Miki, D., Wu, W., Zeng, L., Liu, J., Zhou, J.-X., 2017. The developmental regulator PKL is required to maintain correct DNA methylation patterns at RNA-directed DNA methylation loci. Genome Biol. 18, 1-18.
|
Yang, X.J., Seto, E., 2008. The Rpd3/Hda1 family of lysine deacetylases:from bacteria and yeast to mice and men. Nat. Rev. Mol. Cell Biol. 9, 206-218.
|
Yu, C.W., Liu, X., Luo, M., Chen, C., Lin, X., Tian, G., Lu, Q., Cui, Y., Wu, K., 2011. HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiol. 156, 173-184.
|
Yu, C.W., Tai, R., Wang, S.C., Yang, P., Luo, M., Yang, S., Cheng, K., Wang, W.C., Cheng, Y.S., Wu, K., 2017. Histone deacetylase 6 acts in concert with histone methyltransferases SUVH4, SUVH5, and SUVH6 to regulate transposon silencing. Plant Cell 29, 1970-1983.
|
Zang, C., Schones, D.E., Zeng, C., Cui, K., Zhao, K., Peng, W., 2009. A clustering approach for identification of enriched domains from histone modification ChIPSeq data. Bioinformatics 25, 1952-1958.
|
Zemach, A., Grafi, G., 2003. Characterization of Arabidopsis thaliana methyl-CpGbinding domain (MBD) proteins. Plant J. 34, 565-572.
|
Zhang, C.J., Ning, Y.Q., Zhang, S.W., Chen, Q., Shao, C.-R., Guo, Y.W., Zhou, J.X., Li, L., Chen, S., He, X.J., 2012. IDN2 and its paralogs form a complex required for RNA-directed DNA methylation. PLoS Genet. 8, e1002693.
|
Zhang, D., Jing, Y., Jiang, Z., Lin, R., 2014. The chromatin-remodeling factor PICKLE integrates brassinosteroid and gibberellin signaling during skotomorphogenic growth in Arabidopsis. Plant Cell 26, 2472-2485.
|
Zhang, T., Cooper, S., Brockdorff, N., 2015. The interplay of histone modificationsewriters that read. EMBO Rep. 16, 1467-1481.
|
Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S.W.-L., Chen, H., Henderson, I.R., Shinn, P., Pellegrini, M., Jacobsen, S.E., 2006. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126, 1189-1201.
|
Zheng, B., He, H., Zheng, Y., Wu, W., McCormick, S., 2014. An ARID domaincontaining protein within nuclear bodies is required for sperm cell formation in Arabidopsis thaliana. PLoS Genet. 10, e1004421.
|
Zhong, X., Hale, C.J., Law, J.A., Johnson, L.M., Feng, S., Tu, A., Jacobsen, S.E., 2012. DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons. Nat. Struct. Mol. Biol. 19, 870.
|
Zhou, Y., Tergemina, E., Cui, H., Förderer, A., Hartwig, B., James, G.V., Schneeberger, K., Turck, F., 2017. Ctf4-related protein recruits LHP1-PRC2 to maintain H3K27me3 levels in dividing cells in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 114, 4833-4838.
|
Zhou, Y., Wang, Y., Krause, K., Yang, T., Dongus, J.A., Zhang, Y., Turck, F., 2018. Telobox motifs recruit CLF/SWN-PRC2 for H3K27me3 deposition via TRB factors in Arabidopsis. Nat. Genet. 50, 638-644.
|