5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 6
Jun.  2021
Turn off MathJax
Article Contents

Genome editing in plants with MAD7 nuclease

doi: 10.1016/j.jgg.2021.04.003
Funds:

This work was supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences (Precision Seed Design and Breeding, XDA24020101 and XDA24020310), the National Natural Science Foundation of China (31672015, 31788103) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2020000003).

  • Received Date: 2021-02-14
  • Accepted Date: 2021-04-11
  • Rev Recd Date: 2021-04-03
  • Publish Date: 2021-06-20
  • MAD7 is an engineered nuclease of the Class 2 type V-A CRISPR-Cas (Cas12a/Cpf1) family with a low level of homology to canonical Cas12a nucleases. It has been publicly released as a royalty-free nuclease for both academic and commercial use. Here, we demonstrate that the CRISPR-MAD7 system can be used for genome editing and recognizes T-rich PAM sequences (YTTN) in plants. Its editing efficiency in rice and wheat is comparable to that of the widely used CRISPR-LbCas12a system. We develop two variants, MAD7-RR and MAD7-RVR that increase the target range of MAD7, as well as an M-AFID (a MAD7-APOBEC fusion-induced deletion) system that creates predictable deletions from 5′-deaminated Cs to the MAD7-cleavage site. Moreover, we show that MAD7 can be used for multiplex gene editing and that it is effective in generating indels when combined with other CRISPR RNA orthologs. Using the CRISPR-MAD7 system, we have obtained regenerated mutant rice and wheat plants with up to 65.6% efficiency.

  • These authors contributed equally to this work.
  • loading
  • Bernabé-Orts, J.M., Casas-Rodrigo, I., Minguet, E.G., Landolfi, V., Garcia-Carpintero, V., Gianoglio, S., Vázquez-Vilar, M., Granell, A., Orzaez, D., 2019. Assessment of Cas12a-mediated gene editing efficiency in plants. Plant Biotechnol. J. 17, 1971-1984.
    Čermák, T., Curtin, S.J., Gil-Humanes, J., Čegan, R., Kono, T.J.Y., Konečná, E., Belanto, J.J., Starker, C.G., Mathre, J.W., Greenstein, R.L., et al., 2017. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29, 1196-1217.
    Chen, K., Wang, Y., Zhang, R., Zhang, H., Gao, C., 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667-697.
    Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al., 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
    Endo, A., Masafumi, M., Kaya, H., Toki, S., 2016. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci. Rep. 6, 38169.
    Fonfara, I., Richter, H., Bratovič, M., Le Rhun, A., Charpentier, E., 2016. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532, 517-521.
    Gao, C., 2021. Genome engineering for crop improvement and future agriculture. Cell 184, 1621-1635.
    Gao, L., Cox, D., Yan, W.X., Manteiga, J.C., Schneider, M.W., Yamano, T., Nishimasu, H., Nureki, O., Crosetto, N., Zhang, F., 2017. Engineered Cpf1 variants with altered PAM specificities. Nat. Biotechnol. 35, 789-792.
    Gehrke, J.M., Cervantes, O., Clement, M.K., Wu, Y., Zeng, J., Bauer, D.E., Pinello, L., Joung, J.K., 2018. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat. Biotechnol. 36, 977-982.
    Hu, X., Wang, C., Liu, Q., Fu, Y., Wang, K., 2017. Targeted mutagenesis in rice using CRISPR-Cpf1 system. J. Genet. Genomics 44, 71-73.
    Huang, T.K., Armstrong, B., Schindele, P., Puchta, H., 2021. Efficient gene targeting in Nicotiana tabacum using CRISPR/SaCas9 and temperature tolerant LbCas12a. Plant Biotechnol. J. https://doi.org/10.1111/pbi.13546.
    Jin, S., Gao, Q., Gao, C., 2021. An unbiased method for evaluating the genome-wide specificity of base editors in rice. Nat. Protoc. 16, 431-457.
    Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E., 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
    Kim, D., Kim, J., Hur, J.K., Been, K.W., Yoon, S.H., Kim, J.S., 2016. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat. Biotechnol. 34, 863-868.
    Kim, H., Kim, S.T., Ryu, J., Kang, B.C., Kim, J.S., Kim, S.G., 2017. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat. Commun. 8, 14406.
    Li, J.F., Norville, J.E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G.M., Sheen, J., 2013. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31, 688-691.
    Li, S., Zhang, X., Wang, W., Guo, X., Wu, Z., Du, W., Zhao, Y., Xia, L., 2018. Expanding the scope of CRISPR/Cpf1-mediated genome editing in rice. Mol. Plant 11, 995-998.
    Li, S., Zhang, Y., Xia, L., Qi, Y., 2020. CRISPR-Cas12a enables efficient biallelic gene targeting in rice. Plant Biotechnol. J. 18, 1351-1353.
    Lian, M., Chen, F., Huang, X., Zhao, X., Gou, S., Li, N., Jin, Q., Shi, H., Liang, Y., Xie, J., et al., 2021. Improving the Cpf1-mediated base editing system by combining dCas9/dead sgRNA with human APOBEC3A variants. J. Genet. Genomics. https://doi.org/10.1016/j.jgg.2020.07.010.
    Liu, Z., Schiel, J.A., Maksimova, E., Strezoska, Ž., Zhao, G., Anderson, E.M., Wu, Y., Warren, J., Bartels, A., van Brabant Smith, A., et al., 2020. ErCas12a CRISPRMAD7 for model generation in human cells, mice, and rats. CRISPR J 3, 97-108.
    Makarova, K.S., Wolf, Y.I., Iranzo, J., Shmakov, S.A., Alkhnbashi, O.S., Brouns, S.J.J., Charpentier, E., Cheng, D., Haft, D.H., Horvath, P., et al., 2020. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67-83.
    Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., Church, G.M., 2013. RNA-guided human genome engineering via Cas9. Science 339, 823-826.
    Malzahn, A.A., Tang, X., Lee, K., Ren, Q., Sretenovic, S., Zhang, Y., Chen, H., Kang, M., Bao, Y., Zheng, X., et al., 2019. Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biol. 17, 9.
    Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J.D., Kamoun, S., 2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 691-693.
    Price, M.A., Cruz, R., Bryson, J., Escalettes, F., Rosser, S.J., 2020. Expanding and understanding the CRISPR toolbox for Bacillus subtilis with MAD7 and dMAD7. Biotechnol. Bioeng. 117, 1805-1816.
    Richter, M.F., Zhao, K.T., Eton, E., Lapinaite, A., Newby, G.A., Thuronyi, B.W., Wilson, C., Koblan, L.W., Zeng, J., Bauer, D.E., et al., 2020. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883-891.
    Schindele, P., Puchta, H., 2020. Engineering CRISPR/LbCas12a for highly efficient, temperature-tolerant plant gene editing. Plant Biotechnol. J. 18, 1118-1120.
    Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J.J., Qiu, J.L., et al., 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31, 686-688.
    Shan, Q., Wang, Y., Li, J., Gao, C., 2014. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 9, 2395-2410.
    Tang, X., Lowder, L.G., Zhang, T., Malzahn, A.A., Zheng, X., Voytas, D.F., Zhong, Z., Chen, Y., Ren, Q., Li, Q., et al., 2017. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat. Plants 3, 17018.
    Tang, X., Liu, G., Zhou, J., Ren, Q., You, Q., Tian, L., Xin, X., Zhong, Z., Liu, B., Zheng, X., et al., 2018. A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biol. 19, 84.
    Tang, X., Qi, Y., Zhang, Y., 2021. Single transcript unit CRISPR 2.0 systems for genome editing in rice. Methods Mol. Biol. 2238, 193-204.
    Tu, M., Lin, L., Cheng, Y., He, X., Sun, H., Xie, H., Fu, J., Liu, C., Li, J., Chen, D., et al., 2017. A ‘new lease of life’: FnCpf1 processes DNA cleavage activity for genome editing in human cells. Nucleic Acids Res. 45, 11295-11304.
    Vu, T.V., Sivankalyani, V., Kim, E.J., Doan, D.T.H., Tran, M.T., Kim, J., Sung, Y.W., Park, M., Kang, Y.J., Kim, J.Y., 2020. Highly efficient homology-directed repair using CRISPR/Cpf1-geminiviral replicon in tomato. Plant Biotechnol. J. 18, 2133-2143.
    Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., Qiu, J.L., 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947-951.
    Wang, M., Mao, Y., Lu, Y., Wang, Z., Tao, X., Zhu, J.K., 2018a. Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems. J. Integr. Plant Biol. 60, 626-631.
    Wang, X., Li, J., Wang, Y., Yang, B., Wei, J., Wu, J., Wang, R., Huang, X., Chen, J., Yang, L., 2018b. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nat. Biotechnol. 36, 946-949.
    Wang, S., Zong, Y., Lin, Q., Zhang, H., Chai, Z., Zhang, D., Chen, K., Qiu, J.L., Gao, C., 2020. Precise, predictable multi-nucleotide deletions in rice and wheat using APOBEC-Cas9. Nat. Biotechnol. 38, 1460-1465.
    Wierson, W.A., Simone, B.W., WareJoncas, Z., Mann, C., Welker, J.M., Kar, B., Emch, M.J., Friedberg, I., Gendron, W., Barry, M.A., et al., 2019. Expanding the CRISPR toolbox with ErCas12a in zebrafish and human cells. CRISPR J. 2, 417-433.
    Wolter, F., Puchta, H., 2019. In planta gene targeting can be enhanced by the use of CRISPR/Cas12a. Plant J. 100, 1083-1094.
    Xing, H.L., Dong, L., Wang, Z.P., Zhang, H.Y., Han, C.Y., Liu, B., Wang, X.C., Chen, Q.J., 2014. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 14, 327.
    Xu, R., Qin, R., Li, H., Li, D., Li, L., Wei, P., Yang, J., 2017. Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol. J. 15, 713-717.
    Yamano, T., Zetsche, B., Ishitani, R., Zhang, F., Nishimasu, H., Nureki, O., 2017. Structural basis for the canonical and non-canonical PAM recognition by CRISPR-Cpf1. Mol. Cell 67, 633-645. e3.
    Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., et al., 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771.
    Zetsche, B., Heidenreich, M., Mohanraju, P., Fedorova, I., Kneppers, J., DeGennaro, E.M., Winblad, N., Choudhury, S.R., Abudayyeh, O.O., Gootenberg, J.S., et al., 2017. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat. Biotechnol. 35, 31-34.
    Zhang, Y., Su, J., Duan, S., Ao, Y., Dai, J., Liu, J., Wang, P., Li, Y., Liu, B., Feng, D., et al., 2011. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7, 30.
    Zhang, Y., Malzahn, A.A., Sretenovic, S., Qi, Y., 2019a. The emerging and uncultivated potential of CRISPR technology in plant science. Nat. Plants 5, 778-794.
    Zhang, Y., Zhang, Y., Qi, Y., 2019b. Plant gene knockout and knockdown by CRISPRCpf1 (Cas12a) systems. Methods Mol. Biol. 1917, 245-256.
    Zhang, Q., Yin, K., Liu, G., Li, S., Li, M., Qiu, J.L., 2020. Fusing T5 exonuclease with Cas9 and Cas12a increases the frequency and size of deletion at target sites. Sci. China Life Sci. 63, 1918-1927.
    Zhong, Z., Zhang, Y., You, Q., Tang, X., Ren, Q., Liu, S., Yang, L., Wang, Y., Liu, X., Liu, B., et al., 2018. Plant genome editing using FnCpf1 and LbCpf1 nucleases at redefined and altered PAM sites. Mol. Plant 11, 999-1002.
    Zhu, H., Li, C., Gao, C., 2020. Applications of CRISPReCas in agriculture and plant biotechnology. Nat. Rev. Mol. Cell Biol. 21, 661-667.
    Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y., Qiu, J.L., Wang, D., Gao, C., 2017. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35, 438-440.
    Zong, Y., Song, Q., Li, C., Jin, S., Zhang, D., Wang, Y., Qiu, J.L., Gao, C., 2018. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat. Biotechnol. 36, 950-953.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (505) PDF downloads (88) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return