Artzi, N.S., Shilo, S., Hadar, E., Rossman, H., Barbash-Hazan, S., Ben-Haroush, A., Balicer, R.D., Feldman, B., Wiznitzer, A., Segal, E., 2020. Prediction of gestational diabetes based on nationwide electronic health records. Nat. Med. 26, 71-76.
|
Belkaid, Y., Hand, T.W., 2014. Role of the microbiota in immunity and inflammation. Cell 157, 121-141.
|
Brown, A., Fernández, I.S., Gordiyenko, Y., Ramakrishnan, V., 2016. Ribosome-dependent activation of stringent control. Nature 534, 277-280.
|
Brown, M.V., Reader, J.S., Tzima, E., 2010. Mammalian aminoacyl-tRNA synthetases: cell signaling functions of the protein translation machinery. Vasc. Pharmacol. 52, 21-26.
|
Cabreiro, F., Au, C., Leung, K.-Y., Vergara-Irigaray, N., Cochemé, H.M., Noori, T., Weinkove, D., Schuster, E., Greene, N.D.E., Gems, D., 2013. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153, 228-239.
|
Cani, P.D., Jordan, B.F., 2018. Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nat. Rev. Gastroenterol. Hepatol. 15, 671-682.
|
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., 2020. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet (London, England) 395, 507-513.
|
Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart, D.S., Xia, J., 2018. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 46, W486-W494.
|
Duffy, D., 2020. Understanding immune variation for improved translational medicine. Curr. Opin. Immunol. 65, 83-88.
|
Gilbert, J.A., Blaser, M.J., Caporaso, J.G., Jansson, J.K., Lynch, S.V., Knight, R., 2018. Current understanding of the human microbiome. Nat. Med. 24, 392-400.
|
Gu, S., Chen, Yanfei, Wu, Z., Chen, Yunbo, Gao, H., Lv, L., Guo, F., Zhang, X., 2020. Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clin. Infect. Dis. 71, 2669-2678.
|
Harding, H.P., Zhang, Y., Zeng, H., Novoa, I., Lu, P.D., Calfon, M., Sadri, N., Yun, C., Popko, B., Paules, R., 2003. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619-633.
|
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England) 395, 497-506.
|
Jiang, Y., Lü, X., Man, C., Han, L., Shan, Y., Qu, X., Liu, Y., Yang, S., Xue, Y., Zhang, Y., 2012. Lactobacillus acidophilus induces cytokine and chemokine production via NF-κB and p38 mitogen-activated protein kinase signaling pathways in intestinal epithelial cells. Clin. Vaccine Immunol. 19, 603-608.
|
Ke, G., Qi, M., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.-Y., 2017. LightGBM: a highly efficient gradient boosting decision tree. NIPS (News Physiol. Sci.) 30, 3149-3157.
|
Kim, Y., Sundrud, M.S., Zhou, C., Edenius, M., Zocco, D., Powers, K., Zhang, M., Mazitschek, R., Rao, A., Yeo, C.-Y., 2020. Aminoacyl-tRNA synthetase inhibition activates a pathway that branches from the canonical amino acid response in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 117, 8900-8911.
|
Lee, S.M.L.S.-I., 2017. A Unified Apporach to Interpreting Model Predictions, 07874 arXiv: 1705.
|
Lundberg, S.M., Erion, G., Chen, H., DeGrave, A., Prutkin, J.M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., Lee, S.-I., 2020. From local explanations to global understanding with explainable ai for trees. Nat. Mach. Intell. 2, 56-67.
|
Lundberg, Scott M., Erion, G.G., Lee, S.-I., Consistent individualized feature attribution for tree ensembles. arXiv 1802.03888.
|
Lundberg, Scott M., Nair, B., Vavilala, M.S., Horibe, M., Eisses, M.J., Adams, T., Liston, D.E., Low, D.K.W., Newman, S.F., 2018. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 2, 749-760.
|
Murray, P.J., 2016. Amino acid auxotrophy as a system of immunological control nodes. Nat. Immunol. 17, 132-139.
|
Pedregosa, F., Varoquaux, G., Weiss, R., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., 2011. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825-2830.
|
Pohjavuori, E., Viljanen, M., Korpela, R., Kuitunen, M., Tiittanen, M., Vaarala, O., Savilahti, E., 2004. Lactobacillus GG effect in increasing IFN-gamma production in infants with cow's milk allergy. J. Allergy Clin. Immunol. 114, 131-136.
|
Ruff, W.E., Greiling, T.M., Kriegel, M.A., 2020. Host-microbiota interactions in immune-mediated diseases. Nat. Rev. Microbiol. 18, 521-538.
|
Shen, B., Yi, X., Sun, Y., Bi, X., Du, J., Zhang, C., Quan, S., Zhang, F., Sun, R., Qian, L., 2020. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell 182, 1-14.
|
Vich Vila, A., Collij, V., Sanna, S., Sinha, T., Imhann, F., Bourgonje, A.R., Mujagic, Z., Jonkers, D.M.A.E., Masclee, A.A.M., Fu, J., 2020. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun. 11, 362.
|
World Health Organization, , 2020. Coronavirus disease (COVID-19) pandemic. https://www.who.int/emergencies/diseases/novel-coronavirus-2019. (Accessed December 2020).
|
Yang, Y., Shen, C., Li, J., Yuan, J., Wei, J., Huang, F., Wang, F., Li, G., Li, Y., Xing, L., 2020. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. J. Allergy Clin. Immunol. 146, 119-127.
|
Yeoh, Y.K., Zuo, T., Lui, G.C.-Y., Zhang, F., Liu, Q., Li, A.Y., Chung, A.C., Cheung, C.P., Tso, E.Y., Fung, K.S., 2021. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 70, 698-706.
|
Yoshida, K., Matsumoto, T., Tateda, K., Uchida, K., Tsujimoto, S., Yamaguchi, K., 2001. Induction of interleukin-10 and down-regulation of cytokine production by Klebsiella pneumoniae capsule in mice with pulmonary infection. J. Med. Microbiol. 50, 456-461.
|
Zhang, S., Zeng, X., Ren, M., Mao, X., Qiao, S., 2017. Novel metabolic and physiological functions of branched chain amino acids: a review. J. Anim. Sci. Biotechnol. 23, 8-10.
|
Zhang, Z.-Q., He, L.-P., Liu, Y.-H., Liu, J., Su, Y.-X., Chen, Y.-M., 2014. Association between dietary intake of flavonoid and bone mineral density in middle aged and elderly Chinese women and men. Osteoporos. Int. 25, 2417-2425.
|
Zheng, D., Liwinski, T., Elinav, E., 2020. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492-506.
|
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., 2020. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet (London, England) 395, 1054-1062.
|
Zuo, T., Zhang, F., Lui, G.C.Y., Yeoh, Y.K., Li, A.Y.L., Zhan, H., Wan, Y., Chung, A., Cheung, C.P., Chen, N., 2020. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology 159, 944-955.
|