5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 7
Jul.  2021
Turn off MathJax
Article Contents

PI3K/Akt/mTOR signaling orchestrates the phenotypic transition and chemo-resistance of small cell lung cancer

doi: 10.1016/j.jgg.2021.04.001
Funds:

This work was supported by the National Natural Science Foundation of China (82030083 to H.J., 81871875 to L.H.), the National Basic Research Program of China (2017YFA0505501 to H.J.

2020YFA0803300 to H.J.), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB19020201 to H.J.), the National Natural Science Foundation of China (81872312 to H.J., 82011540007 to H.J., 31621003 to H.J., 81402371 to Y.J., 81802279 to H.H., 81902326 to X.W., 81602443 to X.L.), the Basic Frontier Scientific Research Program of Chinese Academy of Science (ZDBSLY-SM006 to H.J.), the International Cooperation Project of Chinese Academy of Sciences (153D31KYSB20190035 to H.J.), the Youth Innovation Promotion Association CAS (Y919S31371 to X.W.), the Natural Science Foundation of Hunan Province, China (2019JJ50550 to X.L.), Clinical Medical Technology Innovation Guide Project of Hunan (2020SK51827 to X.L.), Project of Scientific Research Plan of Hunan Provincial Health Commission (202103100127 to X.L.).

  • Received Date: 2021-01-28
  • Accepted Date: 2021-04-02
  • Rev Recd Date: 2021-04-02
  • Publish Date: 2021-07-20
  • Small cell lung cancer (SCLC) is a phenotypically heterogeneous disease with an extremely poor prognosis, which is mainly attributed to the rapid development of resistance to chemotherapy. However, the relation between the growth phenotypes and chemo-resistance of SCLC remains largely unclear. Through comprehensive bioinformatic analyses, we found that the heterogeneity of SCLC phenotype was significantly associated with different sensitivity to chemotherapy. Adherent or semiadherent SCLC cells were enriched with activation of the PI3K/Akt/mTOR pathway and were highly chemoresistant. Mechanistically, activation of the PI3K/Akt/mTOR pathway promotes the phenotypic transition from suspension to adhesion growth pattern and confers SCLC cells with chemo-resistance. Such chemo-resistance could be largely overcome by combining chemotherapy with PI3K/Akt/mTOR pathway inhibitors. Our findings support that the PI3K/Akt/mTOR pathway plays an important role in SCLC phenotype transition and chemo-resistance, which holds important clinical implications for improving SCLC treatment.

  • These authors contributed equally to this article.
  • loading
  • Balanis, N.G., Sheu, K.M., Esedebe, F.N., Patel, S.J., Smith, B.A., Park, J.W., Alhani, S., Gomperts, B.N., Huang, J., Witte, O.N., Graeber, T.G., 2019. Pancancer convergence to a small-cell neuroendocrine phenotype that shares susceptibilities with hematological malignancies. Cancer Cell 36, 17-34.
    Barrett, D., Brown, V.I., Grupp, S.A., Teachey, D.T., 2012. Targeting the PI3K/AKT/mTOR signaling axis in children with hematologic malignancies. Paediatr. Drugs. 14, 299-316.
    Bhaskar, K., Miller, M., Chludzinski, A., Herrup, K., Zagorski, M., Lamb, B.T., 2009. The PI3K-Akt-mTOR pathway regulates Abeta oligomer induced neuronal cell cycle events. Mol. Neurodegener. 4, 14.
    Bottger, F., Semenova, E.A., Song, J.Y., Ferone, G., van der Vliet, J., Cozijnsen, M., Bhaskaran, R., Bombardelli, L., Piersma, S.R., Pham, T.V., Jimenez, C.R., Berns, A., 2019. Tumor heterogeneity underlies differential cisplatin sensitivity in mouse models of small-cell lung cancer. Cell Rep. 27, 3345-3358.
    Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A., 2018. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer. J. Clin. 68, 394-424.
    Bu, L.L., Yan, J., Wang, Z., Ruan, H., Chen, Q., Gunadhi, V., Bell, R.B., Gu, Z., 2019. Advances in drug delivery for post-surgical cancer treatment. Biomaterials 219, 119-182.
    Busaidy, N.L., Farooki, A., Dowlati, A., Perentesis, J.P., Dancey, J.E., Doyle, L.A., Brell, J.M., Siu, L.L., 2012. Management of metabolic effects associated with anticancer agents targeting the PI3K-Akt-mTOR pathway. J. Clin. Oncol. 30, 2919-2928.
    Chan, B.A., Coward, J.I., 2013. Chemotherapy advances in small-cell lung cancer. J. Thorac. Dis. 5, 565-578.
    Chen, D., Lin, X., Zhang, C., Liu, Z., Chen, Z., Li, Z., Wang, J., Li, B., Hu, Y., Dong, B., et al., 2018. Dual PI3K/mTOR inhibitor BEZ235 as a promising therapeutic strategy against paclitaxel-resistant gastric cancer via targeting PI3K/Akt/mTOR pathway. Cell Death Dis. 9, 123.
    Chen, Y.T., Feng, B., Chen, L.B., 2012. Update of research on drug resistance in small cell lung cancer chemotherapy. Asian. Pacific. J. Cancer Prev. 13, 3577-3581.
    Dagenais, G.R., Leong, D.P., Rangarajan, S., Lanas, F., Lopez-Jaramillo, P., Gupta, R., Diaz, R., Avezum, A., Oliveira, G.B.F., Wielgosz, A., et al., 2020. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE):a prospective cohort study.
    Lancet 395, 785-794.
    Deng, J., Bai, X., Feng, X., Ni, J., Beretov, J., Graham, P., Li, Y., 2019. Inhibition of PI3K/Akt/mTOR signaling pathway alleviates ovarian cancer chemoresistance through reversing epithelial-mesenchymal transition and decreasing cancer stem cell marker expression. BMC Cancer 19, 618.
    Gao, W., Guo, H., Niu, M., Zheng, X., Zhang, Y., Xue, X., Bo, Y., Guan, X., Li, Z., Guo, Y., et al., 2020. circPARD3 drives malignant progression and chemoresistance of laryngeal squamous cell carcinoma by inhibiting autophagy through the PRKCI-Akt-mTOR pathway. Mol. Cancer 19, 166.
    Gardner, E.E., Lok, B.H., Schneeberger, V.E., de Stanchina, E., Poirier, J.T., Rudin, C.M., 2016. Loss of SLFN11 or gain of TWIST1 promote chemotherapy resistance in small cell lung cancer. Cancer Res. 76.
    Gardner, E.E., Lok, B.H., Schneeberger, V.E., Desmeules, P., Miles, L.A., Arnold, P.K., Ni, A., Khodos, I., de Stanchina, E., Nguyen, T., et al., 2017. Chemosensitive relapse in small cell lung cancer proceeds through an EZH2-SLFN11 axis. Canc. Cell 31, 286-299.
    George, J., Lim, J.S., Jang, S.J., Cun, Y.P., Ozretic, L., Kong, G., Leenders, F., Lu, X., Fernandez-Cuesta, L., Bosco, G., et al., 2015. Comprehensive genomic profiles of small cell lung cancer. Nature 524, 47-53.
    Govindan, R., Page, N., Morgensztern, D., Read, W., Tierney, R., Vlahiotis, A., Spitznagel, E.L., Piccirillo, J., 2006. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years:analysis of the surveillance, epidemiologic, and end results database. J. Clin. Oncol. 24, 4539-4544.
    Hodgkinson, C.L., Morrow, C.J., Li, Y., Metcalf, R.L., Rothwell, D.G., Trapani, F., Polanski, R., Burt, D.J., Simpson, K.L., Morris, K., et al., 2014. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat. Med. 20, 897-903.
    Horie, M., Saito, A., Ohshima, M., Suzuki, H.I., Nagase, T., 2016. YAP and TAZ modulate cell phenotype in a subset of small cell lung cancer. Cancer Sci. 107, 1755-1766.
    Ito, T., Matsubara, D., Tanaka, I., Makiya, K., Tanei, Z.I., Kumagai, Y., Shiu, S.J., Nakaoka, H.J., Ishikawa, S., Isagawa, T., et al., 2016. Loss of YAP1 defines neuroendocrine differentiation of lung tumors. Cancer Sci. 107, 1527-1538.
    Kelly, K.M., 2009. Integrative therapies for children with hematological malignancies. Hematol. Am. Soc. Hematol. Educ. Progr. 307-312.
    Krystal, G.W., Sulanke, G., Litz, J., 2002. Inhibition of phosphatidylinositol 3-kinase-Akt signaling blocks growth, promotes apoptosis, and enhances sensitivity of small cell lung cancer cells to chemotherapy. Mol. Cancer. Ther. 1, 913-922.
    Li, X., Liu, Y., Chen, W., Fang, Y., Xu, H., Zhu, H.H., Chu, M., Li, W., Zhuang, G., Gao, et al., 2014. TOP2Ahigh is the phenotype of recurrence and metastasis whereas TOP2Aneg cells represent cancer stem cells in prostate cancer. Oncotarget 5, 9498.
    Lok, B.H., Gardner, E.E., Schneeberger, V.E., Ni, A., Desmeules, P., Rekhtman, N., de Stanchina, E., Teicher, B.A., Riaz, N., Powell, S.N., et al., 2017. PARP inhibitor activity correlates with SLFN11 expression and demonstrates synergy with temozolomide in small cell lung cancer. Clin. Cancer. Res. 23, 523-535.
    Matsuoka, T., Yashiro, M., 2014. The role of PI3K/Akt/mTOR signaling in gastric carcinoma. Cancers (Basel) 6, 1441-1463.
    Mu, Y., Lou, J., Srivastava, M., Zhao, B., Feng, X.H., Liu, T., Chen, J., Huang, J., 2016. SLFN11 inhibits checkpoint maintenance and homologous recombination repair. EMBO Rep. 17, 94-109.
    Murai, J., Tang, S.W., Leo, E., Baechler, S.A., Redon, C.E., Zhang, H., Al Abo, M., Rajapakse, V.N., Nakamura, E., Jenkins, L.M.M., et al., 2018. SLFN11 blocks stressed replication forks independently of ATR. Mol. Cell. 69, 371-384.
    Qiu, C., Su, W., Shen, N., Qi, X., Wu, X., Wang, K., Li, L., Guo, Z., Tao, H., Wang, G., et al., 2020. MNAT1 promotes proliferation and the chemo-resistance of osteosarcoma cell to cisplatin through regulating PI3K/Akt/mTOR pathway. BMC Cancer 20, 1187.
    Renshaw, J., Taylor, K.R., Bishop, R., Valenti, M., De Haven Brandon, A., Gowan, S., Eccles, S.A., Ruddle, R.R., Johnson, L.D., Raynaud, F.I., et al., 2013. Dual blockade of the PI3K/AKT/mTOR (AZD8055) and RAS/MEK/ERK (AZD6244) pathways synergistically inhibits rhabdomyosarcoma cell growth in vitro and in vivo. Clin. Cancer Res. 19, 5940-5951.
    Rudin, C.M., Poirier, J.T., Byers, L.A., Dive, C., Dowlati, A., George, J., Heymach, J.V., Johnson, J.E., Lehman, J.M., MacPherson, D., et al., 2019. Molecular subtypes of small cell lung cancer:a synthesis of human and mouse model data. Nat. Rev. Cancer 19, 289-297.
    Sabari, J.K., Lok, B.H., Laird, J.H., Poirier, J.T., Rudin, C.M., 2017. Unravelling the biology of SCLC:implications for therapy. Nat. Rev. Clin. Oncol. 14, 549-561.
    Salcido, C.D., Larochelle, A., Taylor, B.J., Dunbar, C.E., Varticovski, L., 2010. Molecular characterisation of side population cells with cancer stem cell-like characteristics in small-cell lung cancer. Br. J. Cancer 102, 1636-1644.
    Sarvi, S., Mackinnon, A.C., Avlonitis, N., Bradley, M., Rintoul, R.C., Rassl, D.M., Wang, W., Forbes, S.J., Gregory, C.D., Sethi, T., 2014. CD133+ cancer stem-like cells in small cell lung synergistically inhibits rhabdomyosarcoma and chemoresistant but sensitive to a novel neuropeptide antagonist. Cancer Res. 74, 1554-1565.
    Sharma, S.V., Haber, D.A., Settleman, J., 2010. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat. Rev. Cancer 10, 241-253.
    Shue, Y.T., Lim, J.S., Sage, J., 2018. Tumor heterogeneity in small cell lung cancer defined and investigated in pre-clinical mouse models. Transl. Lung. Cancer Res. 7, 21-31.
    Siegel, R.L., Miller, K.D., Jemal, A., 2019. Cancer statistics, 2019. CA. Cancer J. Clin. 69, 7-34.
    Sinnberg, T., Lasithiotakis, K., Niessner, H., Schittek, B., Flaherty, K.T., Kulms, D., Maczey, E., Campos, M., Gogel, J., Garbe, C., et al., 2009. Inhibition of PI3KAKT-mTOR signaling sensitizes melanoma cells to cisplatin and temozolomide.
    J. Invest. Dermatol. 129, 1500-1515.
    Smith, I.E., Evans, B.D., Gore, M.E., Vincent, M.D., Repetto, L., Yarnold, J.R., Ford, H.T., 1987. Carboplatin (Paraplatin; JM8) and etoposide (VP-16) as first-line combination therapy for small-cell lung cancer. J. Clin. Oncol. 5, 185-189.
    Steelman, L.S., Navolanic, P.M., Sokolosky, M.L., Taylor, J.R., Lehmann, B.D., Chappell, W.H., Abrams, S.L., Wong, E.W.T., Stadelman, K.M., Terrian, D.M., et al., 2008. Suppression of PTEN function increases breast cancer chemotherapeutic drug resistance while conferring sensitivity to mTOR inhibitors. Oncogene 27, 4086-4095.
    Stewart, C.A., Tong, P., Cardnell, R., Sen, T., Masrorpour, F.M., Fan, Y.H., Wang, J., Byers, L.A., 2016. SLFN11 is a biomarker of sensitivity to PARP inhibition and chemotherapy in small cell lung cancer (SCLC). Cancer Res. 76.
    Toledo, J.R., Prieto, Y., Oramas, N., Sanchez, O., 2009. Polyethylenimine-based transfection method as a simple and effective way to produce recombinant lentiviral vectors. Appl. Biochem. Biotechnol. 157, 538-544.
    Tsurutani, J., West, K.A., Sayyah, J., Gills, J.J., Dennis, P.A., 2005. Inhibition of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway but not the MEK/ERK pathway attenuates laminin-mediated small cell lung cancer cellular survival and resistance to imatinib mesylate or chemotherapy. Cancer. Res. 65, 8423-8432.
    Umemura, S., Mimaki, S., Makinoshima, H., Tada, S., Ishii, G., Ohmatsu, H., Niho, S., Yoh, K., Matsumoto, S., Takahashi, A., et al., 2014. Therapeutic priority of the PI3K/AKT/mTOR pathway in small cell lung cancers as revealed by a comprehensive genomic analysis. J. Thorac. Oncol. 9, 1324-1331.
    van Meerbeeck, J.P., Fennell, D.A., De Ruysscher, D.K.M., 2011. Small-cell lung cancer. Lancet 378, 1741-1755.
    Wagner, A.H., Devarakonda, S., Skidmore, Z.L., Krysiak, K., Ramu, A., Trani, L., Kunisaki, J., Masood, A., Waqar, S.N., Spies, N.C., et al., 2018. Recurrent WNT pathway alterations are frequent in relapsed small cell lung cancer. Nat. Commun. 9, 3787.
    Wang, P., Gao, Q., Suo, Z., Munthe, E., Solberg, S., Ma, L., Wang, M., Westerdaal, N.A., Kvalheim, G., Gaudernack, G., 2013. Identification and characterization of cells with cancer stem cell properties in human primary lung cancer cell lines. PLoS One 8, e57020.
    Yuge, K., Kikuchi, E., Hagiwara, M., Yasumizu, Y., Tanaka, N., Kosaka, T., Miyajima, A., Oya, M., 2015. Nicotine induces tumor growth and chemoresistance through activation of the PI3K/Akt/mTOR pathway in bladder cancer. Mol. Cancer. Ther. 14, 2112-2120.
    Zhang, N., Fu, J.N., Chou, T.C., 2016. Synergistic combination of microtubule targeting anticancer fludelone with cytoprotective panaxytriol derived from panax ginseng against MX-1 cells in vitro:experimental design and data analysis using the combination index method. Am. J. Cancer Res. 6, 97-104.
    Zhang, W., Gao, Y., Li, F., Tong, X., Ren, Y., Han, X., Yao, S., Long, F., Yang, Z., Fan, H., et al., 2015. YAP promotes malignant progression of Lkb1-deficient lung adenocarcinoma through downstream regulation of surviving. Cancer. Res. 75, 4450-4457.
    Zoppoli, G., Regairaz, M., Leo, E., Reinhold, W.C., Varma, S., Ballestrero, A., Doroshow, J.H., Pommier, Y., 2012. Putative DNA/RNA helicase Schlafen-11(SLFN11) sensitizes cancer cells to DNA-damaging agents. Proc. Natl. Acad. Sci. U. S. A. 109, 15030-15035.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (178) PDF downloads (15) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return