5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 6
Jun.  2021
Turn off MathJax
Article Contents

Polycomb-group proteins in the initiation and progression of cancer

doi: 10.1016/j.jgg.2021.03.013
Funds:

We thank members of the Wu laboratory for discussions. This work was supported by the National Key Research and Development Program (2017YFA0504102), the National Natural Science Foundation of China (81772676, 31970579), and the Natural Science Foundation of Tianjin Municipal Science and Technology Commission (18JCJQJC48200), Key Research Project of Tianjin Education Commission (2020ZD13), Open grant from the Chinese Academy of Medical Sciences (157-Zk19-02 and Z20-04) and the Talent Excellence Program from Tianjin Medical University and Research Project of Tianjin Education Commission.

  • Received Date: 2021-01-20
  • Accepted Date: 2021-03-28
  • Rev Recd Date: 2021-03-23
  • Publish Date: 2021-06-20
  • The Polycomb group (PcG) proteins are a family of chromatin regulators and critical for the maintenance of cellular identity. The PcG machinery can be categorized into at least three multi-protein complexes, namely Polycomb Repressive Complex 1 (PRC1), PRC2, and Polycomb Repressive DeUBiquitinase (PR-DUB). Their deregulation has been associated with human cancer initiation and progression. Here we review the updated understanding for PcG proteins in transcription regulation and DNA damage repair and highlight increasing links to the hallmarks in cancer. Accordingly, we discuss some of the recent advances in drug development or strategies against cancers caused by the gain or loss of PcG functions.

  • loading
  • Abdel-Wahab, O., Levine, R.L., 2013. Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood 121, 3563-3572.
    Anwar, T., Arellano-Garcia, C., Ropa, J., Chen, Y.C., Kim, H.S., Yoon, E., Grigsby, S., Basrur, V., Nesvizhskii, A.I., Muntean, A., et al., 2018. P38-mediated phosphorylation at T367 induces EZH2 cytoplasmic localization to promote breast cancer metastasis. Nat. Commun. 9, 2801.
    Asada, S., Fujino, T., Goyama, S., Kitamura, T., 2019. The role of ASXL1 in hematopoiesis and myeloid malignancies. Cell. Mol. Life Sci. 76, 2511-2523.
    Bates, S.E., 2020. Epigenetic therapies for cancer. N. Engl. J. Med. 383, 650-663.
    Beringer, M., Pisano, P., Di Carlo, V., Blanco, E., Chammas, P., Vizan, P., Gutierrez, A., Aranda, S., Payer, B., Wierer, M., et al., 2016. EPOP functionally links elongin and polycomb in pluripotent stem cells. Mol. Cell 64, 645-658.
    Blackledge, N.P., Rose, N.R., Klose, R.J., 2015. Targeting polycomb systems to regulate gene expression: modifications to a complex story. Nat. Rev. Mol. Cell Biol. 16, 643-649.
    Bracken, A.P., Helin, K., 2009. Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat. Rev. Canc. 9, 773-784.
    Burr, M.L., Sparbier, C.E., Chan, K.L., Chan, Y.C., Kersbergen, A., Lam, E.Y.N., Azidis-Yates, E., Vassiliadis, D., Bell, C.C., Gilan, O., et al., 2019. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Canc. Cell 36, 385-401 e8.
    Cai, Z., Qian, Z.Y., Jiang, H., Ma, N., Li, Z., Liu, L.Y., Ren, X.X., Shang, Y.R., Wang, J.J., Li, J.J., et al., 2018. Hpcl3s promotes hepatocellular carcinoma metastasis by activating beta-catenin signaling. Canc. Res. 78, 2536-2549.
    Campagne, A., Lee, M.K., Zielinski, D., Michaud, A., Le Corre, S., Dingli, F., Chen, H., Shahidian, L.Z., Vassilev, I., Servant, N., et al., 2019. Bap1 complex promotes transcription by opposing PRC1-mediated H2A ubiquitylation. Nat. Commun. 10, 348.
    Campbell, S., Ismail, I.H., Young, L.C., Poirier, G.G., Hendzel, M.J., 2013. Polycomb repressive complex 2 contributes to DNA double-strand break repair. Cell Cycle 12, 2675-2683.
    Cao, L., Xia, X., Kong, Y., Jia, F., Yuan, B., Li, R., Li, Q., Wang, Y., Cui, M., Dai, Z., et al., 2020. Deregulation of tumor suppressive ASXL1-PTEN/AKT axis in myeloid malignancies. J. Mol. Cell Biol. 12, 688-699.
    Carbone, M., Yang, H., Pass, H.I., Krausz, T., Testa, J.R., Gaudino, G., 2013. BAP1 and cancer. Nat. Rev. Canc. 13, 153-159.
    Chan, H.L., Beckedorff, F., Zhang, Y., Garcia-Huidobro, J., Jiang, H., Colaprico, A., Bilbao, D., Figueroa, M.E., LaCava, J., Shiekhattar, R., et al., 2018. Polycomb complexes associate with enhancers and promote oncogenic transcriptional programs in cancer through multiple mechanisms. Nat. Commun. 9, 3377.
    Chen, S., Jiao, L., Liu, X., Yang, X., Liu, X., 2020. A dimeric structural scaffold for prc2-PCL targeting to CpG island chromatin. Mol. Cell 77, 1265-1278 e7.
    Cohen, I., Bar, C., Ezhkova, E., 2020. Activity of PRC1 and histone H2ak119 monoubiquitination: revising popular misconceptions. Bioessays, e1900192.
    Conway, E., Jerman, E., Healy, E., Ito, S., Holoch, D., Oliviero, G., Deevy, O., Glancy, E., Fitzpatrick, D.J., Mucha, M., et al., 2018. A family of vertebratespecific polycombs encoded by the LCOR/LCORL genes balance PRC2 subtype activities. Mol. Cell 70, 408-421 e8.
    Cooper, S., Grijzenhout, A., Underwood, E., Ancelin, K., Zhang, T., Nesterova, T.B., Anil-Kirmizitas, B., Bassett, A., Kooistra, S.M., Agger, K., et al., 2016. Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between polycomb complexes PRC1 and PRC2. Nat. Commun. 7, 13661.
    De Raedt, T., Beert, E., Pasmant, E., Luscan, A., Brems, H., Ortonne, N., Helin, K., Hornick, J.L., Mautner, V., Kehrer-Sawatzki, H., et al., 2014. PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. Nature 514, 247-251.
    Di Croce, L., Helin, K., 2013. Transcriptional regulation by polycomb group proteins. Nat. Struct. Mol. Biol. 20, 1147-1155.
    Endoh, M., Endo, T.A., Shinga, J., Hayashi, K., Farcas, A., Ma, K.W., Ito, S., Sharif, J., Endoh, T., Onaga, N., et al., 2017. PCGF6-PRC1 suppresses premature differentiation of mouse embryonic stem cells by regulating germ cell-related genes. Elife 6, e21064.
    Farcas, A.M., Blackledge, N.P., Sudbery, I., Long, H.K., McGouran, J.F., Rose, N.R., Lee, S., Sims, D., Cerase, A., Sheahan, T.W., et al., 2012. Kdm2b links the polycomb repressive complex 1 (PRC1) to recognition of CpG islands. Elife 1, e00205.
    Ferrari, K.J., Scelfo, A., Jammula, S., Cuomo, A., Barozzi, I., Stutzer, A., Fischle, W., Bonaldi, T., Pasini, D., 2014. Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol. Cell 53, 49-62.
    Flavahan, W.A., Gaskell, E., Bernstein, B.E., 2017. Epigenetic plasticity and the hallmarks of cancer. Science 357.
    Francis, N.J., Kingston, R.E., Woodcock, C.L., 2004. Chromatin compaction by a polycomb group protein complex. Science 306, 1574-1577.
    Gao, Z., Lee, P., Stafford, J.M., von Schimmelmann, M., Schaefer, A., Reinberg, D., 2014. An AUTS2-polycomb complex activates gene expression in the CNS. Nature 516, 349-354.
    Hahn, M.A., Li, A.X., Wu, X., Yang, R., Drew, D.A., Rosenberg, D.W., Pfeifer, G.P., 2014. Loss of the polycomb mark from bivalent promoters leads to activation of cancer-promoting genes in colorectal tumors. Canc. Res. 74, 3617-3629.
    Han, A., Purwin, T.J., Aplin, A.E., 2021. Roles of the BAP1 tumor suppressor in cell metabolism. Canc. Res.
    Hanahan, D., Weinberg, R.A., 2011. Hallmarks of cancer: the next generation. Cell 144, 646-674.
    He, Y., Selvaraju, S., Curtin, M.L., Jakob, C.G., Zhu, H., Comess, K.M., Shaw, B., The, J., Lima-Fernandes, E., Szewczyk, M.M., et al., 2017. The EED proteinprotein interaction inhibitor A-395 inactivates the PRC2 complex. Nat. Chem. Biol. 13, 389-395.
    Hu, K., Li, Y., Wu, W., Xie, L., Yan, H., Cai, Y., Chen, D., Jiang, Q., Lin, L., Chen, Z., et al., 2020a. ATM-dependent recruitment of BRD7 is required for transcriptional repression and DNA repair at DNA breaks flanking transcriptional active regions. Adv. Sci. (Weinh) 7, 2000157.
    Hsu, J.H., Rasmusson, T., Robinson, J., Pachl, F., Read, J., Kawatkar, S., DH, O.D., Bagal, S., Code, E., Rawlins, P., et al., 2020. EED-targeted PROTACs degrade EED, EZH2, and SUZ12 in the PRC2 complex. Cell Chem. Biol. 27, 41-46 e17.
    Hu, S., Huo, D., Yu, Z., Chen, Y., Liu, J., Liu, L., Wu, X., Zhang, Y., 2020b. Nchmr detector: a computational framework to systematically reveal non-classical functions of histone modification regulators. Genome Biol. 21, 48.
    Huang, X., Yan, J., Zhang, M., Wang, Y., Chen, Y., Fu, X., Wei, R., Zheng, X.L., Liu, Z., Zhang, X., et al., 2018. Targeting epigenetic crosstalk as a therapeutic strategy for EZH2-aberrant solid tumors. Cell 175, 186-199 e19.
    Illingworth, R.S., 2019. Chromatin folding and nuclear architecture: PRC1 function in 3D. Curr. Opin. Genet. Dev. 55, 82-90.
    Isshiki, Y., Nakajima-Takagi, Y., Oshima, M., Aoyama, K., Rizk, M., Kurosawa, S., Saraya, A., Kondo, T., Sakaida, E., Nakaseko, C., et al., 2019. KDM2B in polycomb repressive complex 1.1 functions as a tumor suppressor in the initiation of T-cell leukemogenesis. Blood Adv. 3, 2537-2549.
    Jin, X., Kim, L.J.Y., Wu, Q., Wallace, L.C., Prager, B.C., Sanvoranart, T., Gimple, R.C., Wang, X., Mack, S.C., Miller, T.E., et al., 2017. Targeting glioma stem cells through combined BMI1 and EZH2 inhibition. Nat. Med. 23, 1352-1361.
    Kakarougkas, A., Ismail, A., Chambers, A.L., Riballo, E., Herbert, A.D., Kunzel, J., Lobrich, M., Jeggo, P.A., Downs, J.A., 2014. Requirement for PBAF in transcriptional repression and repair at DNA breaks in actively transcribed regions of chromatin. Mol. Cell 55, 723-732.
    Kalb, R., Latwiel, S., Baymaz, H.I., Jansen, P.W., Muller, C.W., Vermeulen, M., Muller, J., 2014. Histone H2A monoubiquitination promotes histone H3 methylation in polycomb repression. Nat. Struct. Mol. Biol. 21, 569-571.
    Karakashev, S., Fukumoto, T., Zhao, B., Lin, J., Wu, S., Fatkhutdinov, N., Park, P.H., Semenova, G., Jean, S., Cadungog, M.G., et al., 2020. EZH2 inhibition sensitizes CARM1-high, homologous recombination proficient ovarian cancers to PARP inhibition. Canc. Cell 37, 157-167 e6.
    Kim, E., Kim, M., Woo, D.H., Shin, Y., Shin, J., Chang, N., Oh, Y.T., Kim, H., Rheey, J., Nakano, I., et al., 2013a. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Canc. Cell 23, 839-852.
    Kim, J., Lee, Y., Lu, X., Song, B., Fong, K.W., Cao, Q., Licht, J.D., Zhao, J.C., Yu, J., 2018. Polycomb- and methylation-independent roles of EZH2 as a transcription activator. Cell Rep. 25, 2808-2820. e4.
    Kasinath, V., Beck, C., Sauer, P., Poepsel, S., Kosmatka, J., Faini, M., Toso, D., Aebersold, R., Nogales, E., 2021. JARID2 and AEBP2 regulate PRC2 in the presence of H2AK119ub1 and other histone modifications. Science 371, eabc3393.
    Kim, W., Bird, G.H., Neff, T., Guo, G., Kerenyi, M.A., Walensky, L.D., Orkin, S.H., 2013b. Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer. Nat. Chem. Biol. 9, 643-650.
    Klose, R.J., Cooper, S., Farcas, A.M., Blackledge, N.P., Brockdorff, N., 2013. Chromatin samplingdan emerging perspective on targeting polycomb repressor proteins. PLoS Genet. 9, e1003717.
    Knutson, S.K., Wigle, T.J., Warholic, N.M., Sneeringer, C.J., Allain, C.J., Klaus, C.R., Sacks, J.D., Raimondi, A., Majer, C.R., Song, J., et al., 2012. A selective inhibitor of EZH2 blocks hH3K27 methylation and kills mutant lymphoma cells. Nat. Chem. Biol. 8, 890-896.
    Kolovos, P., Nishimura, K., Sankar, A., Sidoli, S., Cloos, P.A., Helin, K., Christensen, J., 2020. PR-DUB maintains the expression of critical genes through FOXK1/2- and ASXL1/2/3-dependent recruitment to chromatin and H2aK119ub1 deubiquitination. Genome Res. 30, 1119-1130.
    Kondo, T., Isono, K., Kondo, K., Endo, T.A., Itohara, S., Vidal, M., Koseki, H., 2014. Polycomb potentiates meis2 activation in midbrain by mediating interaction of the promoter with a tissue-specific enhancer. Dev. Cell 28, 94-101.
    Kong, Y., Ai, C., Dong, F., Xia, X., Zhao, X., Yang, C., Kang, C., Zhou, Y., Zhao, Q., Sun, X., et al., 2018. Targeting of BMI-1 with PTC-209 inhibits glioblastoma development. Cell Cycle 17, 1199-1211.
    Koppens, M., van Lohuizen, M., 2016. Context-dependent actions of polycomb repressors in cancer. Oncogene 35, 1341-1352.
    Kreso, A., van Galen, P., Pedley, N.M., Lima-Fernandes, E., Frelin, C., Davis, T., Cao, L., Baiazitov, R., Du, W., Sydorenko, N., et al., 2014. Self-renewal as a therapeutic target in human colorectal cancer. Nat. Med. 20, 29-36.
    LaFave, L.M., Beguelin, W., Koche, R., Teater, M., Spitzer, B., Chramiec, A., Papalexi, E., Keller, M.D., Hricik, T., Konstantinoff, K., et al., 2015. Loss of BAP1 function leads to EZH2-dependent transformation. Nat. Med. 21, 1344-1349.
    Li, H., Liefke, R., Jiang, J., Kurland, J.V., Tian, W., Deng, P., Zhang, W., He, Q., Patel, D.J., Bulyk, M.L., et al., 2017. Polycomb-like proteins link the PRC2 complex to CpG islands. Nature 549, 287-291.
    Li, J., Xu, Y., Long, X.-D., Wang, W., Jiao, H.-K., Mei, Z., Yin, Q.-Q., Ma, L.-N., Zhou, A.-W., Wang, L.-S., et al., 2014. Cbx4 governs HIF-1α to potentiate angiogenesis of hepatocellular carcinoma by its SUMO E3 ligase activity. Canc. Cell 25, 547-548.
    Loubiere, V., Martinez, A.M., Cavalli, G., 2019. Cell fate and developmental regulation dynamics by polycomb proteins and 3D genome architecture. Bioessays 41, e1800222.
    Loubiere, V., Papadopoulos, G.L., Szabo, Q., Martinez, A.M., Cavalli, G., 2020. Widespread activation of developmental gene expression characterized by PRC1-dependent chromatin looping. Sci. Adv. 6, eaax4001.
    Malouf, G.G., Taube, J.H., Lu, Y., Roysarkar, T., Panjarian, S., Estecio, M.R., Jelinek, J., Yamazaki, J., Raynal, N.J., Long, H., et al., 2013. Architecture of epigenetic reprogramming following Twist1-mediated epithelial-mesenchymal transition. Genome Biol. 14, R144.
    McCabe, M.T., Ott, H.M., Ganji, G., Korenchuk, S., Thompson, C., Van Aller, G.S., Liu, Y., Graves, A.P., Della Pietra 3rd, A., Diaz, E., et al., 2012. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492, 108-112.
    Micol, J.B., Abdel-Wahab, O., 2016. The role of additional sex combs-like proteins in cancer. Cold Spring Harb. Perspect. Med. 6, a026526.
    Mohammad, F., Weissmann, S., Leblanc, B., Pandey, D.P., Hojfeldt, J.W., Comet, I., Zheng, C., Johansen, J.V., Rapin, N., Porse, B.T., et al., 2017. EZH2 is a potential therapeutic target for H3K27m-mutant pediatric gliomas. Nat. Med. 23, 483-492.
    Nalawansha, D.A., Crews, C.M., 2020. Protacs: an emerging therapeutic modality in precision medicine. Cell Chem. Biol. 27, 998-1014.
    Ngan, C.Y., Wong, C.H., Tjong, H., Wang, W., Goldfeder, R.L., Choi, C., He, H., Gong, L., Lin, J., Urban, B., et al., 2020. Chromatin interaction analyses elucidate the roles of PRC2-bound silencers in mouse development. Nat. Genet. 52, 264-272.
    Nishida, Y., Maeda, A., Kim, M.J., Cao, L., Kubota, Y., Ishizawa, J., AlRawi, A., Kato, Y., Iwama, A., Fujisawa, M., et al., 2017. The novel BMI-1 inhibitor PTC596 downregulates MCL-1 and induces p53-independent mitochondrial apoptosis in acute myeloid leukemia progenitor cells. Blood Canc. J. 7, e527.
    Peng, D., Kryczek, I., Nagarsheth, N., Zhao, L., Wei, S., Wang, W., Sun, Y., Zhao, E., Vatan, L., Szeliga, W., et al., 2015. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249-253.
    Piunti, A., Hashizume, R., Morgan, M.A., Bartom, E.T., Horbinski, C.M., Marshall, S.A., Rendleman, E.J., Ma, Q., Takahashi, Y.H., Woodfin, A.R., et al., 2017. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat. Med. 23, 493-500.
    Piunti, A., Shilatifard, A., 2021. The roles of polycomb repressive complexes in mammalian development and cancer. Nat. Rev. Mol. Cell Biol. 22, 326-345.
    Plys, A.J., Davis, C.P., Kim, J., Rizki, G., Keenen, M.M., Marr, S.K., Kingston, R.E., 2019. Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2. Genes Dev. 33, 799-813.
    Potjewyd, F., Turner, A.W., Beri, J., Rectenwald, J.M., Norris-Drouin, J.L., Cholensky, S.H., Margolis, D.M., Pearce, K.H., Herring, L.E., James, L.I., 2020. Degradation of polycomb repressive complex 2 with an EED-targeted bivalent chemical degrader. Cell Chem. Biol. 27, 47-56 e15.
    Qi, W., Zhao, K., Gu, J., Huang, Y., Wang, Y., Zhang, H., Zhang, M., Zhang, J., Yu, Z., Li, L., et al., 2017. An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of eed. Nat. Chem. Biol. 13, 381-388.
    Rai, K., Akdemir, K.C., Kwong, L.N., Fiziev, P., Wu, C.J., Keung, E.Z., Sharma, S., Samant, N.S., Williams, M., Axelrad, J.B., et al., 2015. Dual roles of RNF2 in melanoma progression. Canc. Discov. 5, 1314-1327.
    Riising, E.M., Comet, I., Leblanc, B., Wu, X., Johansen, J.V., Helin, K., 2014. Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol. Cell 55, 347-360.
    Rizq, O., Mimura, N., Oshima, M., Saraya, A., Koide, S., Kato, Y., Aoyama, K., Nakajima-Takagi, Y., Wang, C., Chiba, T., et al., 2017. Dual inhibition of EZH2 and EZH1 sensitizes PRC2-dependent tumors to proteasome inhibition. Clin. Canc. Res. 23, 4817-4830.
    Scelfo, A., Fernandez-Perez, D., Tamburri, S., Zanotti, M., Lavarone, E., Soldi, M., Bonaldi, T., Ferrari, K.J., Pasini, D., 2019. Functional landscape of PCGF proteins reveals both RING1a/b-dependent-and RING1a/b-independent-specific activities. Mol. Cell 74, 1037-1052. e7.
    Scheuermann, J.C., de Ayala Alonso, A.G., Oktaba, K., Ly-Hartig, N., McGinty, R.K., Fraterman, S., Wilm, M., Muir, T.W., Muller, J., 2010. Histone H2A deubiquitinase activity of the polycomb repressive complex PR-DUB. Nature 465, 243-247.
    Schuettengruber, B., Bourbon, H.M., Di Croce, L., Cavalli, G., 2017. Genome regulation by polycomb and trithorax: 70 years and counting. Cell 171, 34-57.
    Serresi, M., Gargiulo, G., Proost, N., Siteur, B., Cesaroni, M., Koppens, M., Xie, H., Sutherland, K.D., Hulsman, D., Citterio, E., et al., 2016. Polycomb repressive complex 2 is a barrier to kras-driven inflammation and epithelial-mesenchymal transition in non-small-cell lung cancer. Canc. Cell 29, 17-31.
    Serresi, M., Siteur, B., Hulsman, D., Company, C., Schmitt, M.J., Lieftink, C., Morris, B., Cesaroni, M., Proost, N., Beijersbergen, R.L., et al., 2018. Ezh2 inhibition in Kras-driven lung cancer amplifies inflammation and associated vulnerabilities. J. Exp. Med. 215, 3115-3135.
    Su, W., Han, H.H., Wang, Y., Zhang, B., Zhou, B., Cheng, Y., Rumandla, A., Gurrapu, S., Chakraborty, G., Su, J., et al., 2019. The polycomb repressor complex 1 drives double-negative prostate cancer metastasis by coordinating stemness and immune suppression. Canc. Cell 36, 139-155. e10.
    Tamburri, S., Lavarone, E., Fernandez-Perez, D., Conway, E., Zanotti, M., Manganaro, D., Pasini, D., 2020. Histone H2aK119 mono-ubiquitination is essential for polycomb-mediated transcriptional repression. Mol. Cell 77, 840-856. e5.
    Tatavosian, R., Kent, S., Brown, K., Yao, T., Duc, H.N., Huynh, T.N., Zhen, C.Y., Ma, B., Wang, H., Ren, X., 2019. Nuclear condensates of the polycomb protein chromobox 2 (CBX2) assemble through phase separation. J. Biol. Chem. 294, 1451-1463.
    Tiwari, N., Tiwari, V.K., Waldmeier, L., Balwierz, P.J., Arnold, P., Pachkov, M., MeyerSchaller, N., Schubeler, D., van Nimwegen, E., Christofori, G., 2013. Sox4 is a master regulator of epithelial-mesenchymal transition by controlling EZH2 expression and epigenetic reprogramming. Canc. Cell 23, 768-783.
    Trojer, P., Cao, A.R., Gao, Z., Li, Y., Zhang, J., Xu, X., Li, G., Losson, R., ErdjumentBromage, H., Tempst, P., et al., 2011. L3MBTL2 protein acts in concert with PcG protein-mediated monoubiquitination of H2A to establish a repressive chromatin structure. Mol. Cell 42, 438-450.
    Tzatsos, A., Paskaleva, P., Ferrari, F., Deshpande, V., Stoykova, S., Contino, G., Wong, K.K., Lan, F., Trojer, P., Park, P.J., et al., 2013. KDM2B promotes pancreatic cancer via polycomb-dependent and -independent transcriptional programs. J. Clin. Invest. 123, 727-739.
    Ui, A., Nagaura, Y., Yasui, A., 2015. Transcriptional elongation factor ENL phosphorylated by ATM recruits polycomb and switches off transcription for DSB repair. Mol. Cell 58, 468-482.
    van den Boom, V., Maat, H., Geugien, M., Rodriguez Lopez, A., Sotoca, A.M., Jaques, J., Brouwers-Vos, A.Z., Fusetti, F., Groen, R.W., Yuan, H., et al., 2016. Non-canonical PRC1.1 targets active genes independent of H3K27me3 and is essential for leukemogenesis. Cell Rep. 14, 332-346.
    Vissers, J.H., van Lohuizen, M., Citterio, E., 2012. The emerging role of polycomb repressors in the response to DNA damage. J. Cell Sci. 125, 3939-3948.
    Wan, L., Xu, K., Wei, Y., Zhang, J., Han, T., Fry, C., Zhang, Z., Wang, Y.V., Huang, L., Yuan, M., et al., 2018. Phosphorylation of EZH2 by AMPK suppresses PRC2 methyltransferase activity and oncogenic function. Mol. Cell 69, 279-291 e5.
    Wang, L., Zhao, Z., Ozark, P.A., Fantini, D., Marshall, S.A., Rendleman, E.J., Cozzolino, K.A., Louis, N., He, X., Morgan, M.A., et al., 2018. Resetting the epigenetic balance of polycomb and compass function at enhancers for cancer therapy. Nat. Med. 24, 758-769.
    Wu, X., Bekker-Jensen, I.H., Christensen, J., Rasmussen, K.D., Sidoli, S., Qi, Y., Kong, Y., Wang, X., Cui, Y., Xiao, Z., et al., 2015. Tumor suppressor ASXL1 is essential for the activation of INK4B expression in response to oncogene activity and anti-proliferative signals. Cell Res. 25, 1205-1218.
    Wu, X., Johansen, J.V., Helin, K., 2013. Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol. Cell 49, 1134-1146.
    Xu, K., Wu, Z.J., Groner, A.C., He, H.H., Cai, C., Lis, R.T., Wu, X., Stack, E.C., Loda, M., Liu, T., et al., 2012. EZH2 oncogenic activity in castration-resistant prostate cancer cells is polycomb-independent. Science 338, 1465-1469.
    Yamagishi, M., Hori, M., Fujikawa, D., Ohsugi, T., Honma, D., Adachi, N., Katano, H., Hishima, T., Kobayashi, S., Nakano, K., et al., 2019. Targeting excessive EZH1 and EZH2 activities for abnormal histone methylation and transcription network in malignant lymphomas. Cell Rep. 29, 2321-2337. e7.
    Yamaguchi, H., Du, Y., Nakai, K., Ding, M., Chang, S.S., Hsu, J.L., Yao, J., Wei, Y., Nie, L., Jiao, S., et al., 2018. EZH2 contributes to the response to PARP inhibitors through its PARP-mediated poly-ADP ribosylation in breast cancer. Oncogene 37, 208-217.
    Yin, J., Leavenworth, J.W., Li, Y., Luo, Q., Xie, H., Liu, X., Huang, S., Yan, H., Fu, Z., Zhang, L.Y., et al., 2015. EZH2 regulates differentiation and function of natural killer cells through histone methyltransferase activity. Proc. Natl. Acad. Sci. U. S. A. 112, 15988-15993.
    Yu, J.R., Lee, C.H., Oksuz, O., Stafford, J.M., Reinberg, D., 2019. PRC2 is high maintenance. Genes Dev. 33, 903-935.
    Zhang, P., He, F., Bai, J., Yamamoto, S., Chen, S., Zhang, L., Sheng, M., Zhang, L., Guo, Y., Man, N., et al., 2018a. Chromatin regulator Asxl1 loss and Nf1 haploinsufficiency cooperate to accelerate myeloid malignancy. J. Clin. Invest. 128, 5383-5398.
    Yuan, H., Han, Y., Wang, X., Li, N., Liu, Q., Yin, Y., Wang, H., Pan, L., Li, L., Song, K., et al., 2020. SETD2 restricts prostate cancer metastasis by integrating EZH2 and AMPK signaling pathways. Canc. Cell 38, 350-365 e7.
    Zhang, Y., Chan, H.L., Garcia-Martinez, L., Karl, D.L., Weich, N., Slingerland, J.M., Verdun, R.E., Morey, L., 2020a. Estrogen induces dynamic ERa and RING1B recruitment to control gene and enhancer activities in luminal breast cancer. Sci. Adv. 6, eaaz7249.
    Zhang, Y., Shi, J., Liu, X., Feng, L., Gong, Z., Koppula, P., Sirohi, K., Li, X., Wei, Y., Lee, H., et al., 2018b. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat. Cell Biol. 20, 1181-1192.
    Zhang, Y., Shi, J., Liu, X., Xiao, Z., Lei, G., Lee, H., Koppula, P., Cheng, W., Mao, C., Zhuang, L., et al., 2020b. H2A monoubiquitination links glucose availability to epigenetic regulation of the endoplasmic reticulum stress response and cancer cell death. Canc. Res. 80, 2243-2256.
    Zhao, J., Wang, M., Chang, L., Yu, J., Song, A., Liu, C., Huang, W., Zhang, T., Wu, X., Shen, X., et al., 2020. RYBP/YAF2-PRC1 complexes and histone H1-dependent chromatin compaction mediate propagation of H2aK119ub1 during cell division. Nat. Cell Biol. 22, 439-452.
    Zhou, W., Chen, C., Shi, Y., Wu, Q., Gimple, R.C., Fang, X., Huang, Z., Zhai, K., Ke, S.Q., Ping, Y.F., et al., 2017. Targeting glioma stem cell-derived pericytes disrupts the blood-tumor barrier and improves chemotherapeutic efficacy. Cell Stem Cell 21, 591-603 e4.
    Zingg, D., Arenas-Ramirez, N., Sahin, D., Rosalia, R.A., Antunes, A.T., Haeusel, J., Sommer, L., Boyman, O., 2017. The histone methyltransferase EZH2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Rep. 20, 854-867.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (165) PDF downloads (5) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return