5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 4
Apr.  2021
Turn off MathJax
Article Contents

Geranylgeranyl pyrophosphate-mediated protein geranylgeranylation regulates endothelial cell proliferation and apoptosis during vasculogenesis in mouse embryo

doi: 10.1016/j.jgg.2021.03.009
Funds:

This work was supported by the National Natural Science Foundation of China (31530046 and 31771492), National Science and Technology Major Project (SQ2018YFC100242), Key R&D Program of Jiangsu Province (BE2017708), Fundamental Research Funds for the Central Universities (021414380469), and Nature Science Foundation of Jiangsu Province (BK20200061). The authors thank our laboratory members for their support regarding the technology and materials.

  • Received Date: 2020-10-25
  • Accepted Date: 2021-03-16
  • Rev Recd Date: 2021-03-14
  • Publish Date: 2021-04-20
  • Vascular development is essential for the establishment of the circulatory system during embryonic development and requires the proliferation of endothelial cells. However, the underpinning regulatory mechanisms are not well understood. Here, we report that geranylgeranyl pyrophosphate (GGPP), a metabolite involved in protein geranylgeranylation, plays an indispensable role in embryonic vascular development. GGPP is synthesized by geranylgeranyl pyrophosphate synthase (GGPPS) in the mevalonate pathway. The selective knockout of Ggpps in endothelial cells led to aberrant vascular development and embryonic lethality, resulting from the decreased proliferation and enhanced apoptosis of endothelial cells during vasculogenesis. The defect in protein geranylgeranylation induced by GGPP depletion inhibited the membrane localization of RhoA and enhanced yes-associated protein (YAP) phosphorylation, thereby prohibiting the entry of YAP into the nucleus and the expression of YAP target genes related to cell proliferation and the antiapoptosis process. Moreover, inhibition of the mevalonate pathway by simvastatin induced endothelial cell proliferation defects and apoptosis, which were ameliorated by GGPP. Geranylgeraniol (GGOH), a precursor of GGPP, ameliorated the harmful effects of simvastatin on vascular development of developing fetuses in pregnant mice. These results indicate that GGPP-mediated protein geranylgeranylation is essential for endothelial cell proliferation and the antiapoptosis process during embryonic vascular development.
  • These authors contributed equally to this work.
  • loading
  • Allal, C., Favre, G., Couderc, B., Salicio, S., Sixou, S., Hamilton, A.D., Sebti, S.M., Lajoie-Mazenc, I., Pradines, A., 2000. Rhoa prenylation is required for promotion of cell growth and transformation and cytoskeleton organization but not for induction of serum response element transcription. J. Biol. Chem. 275, 31001-31008.
    Baigent, C., Keech, A., Kearney, P.M., Blackwell, L., Buck, G., Pollicino, C., Kirby, A., Sourjina, T., Peto, R., Collins, R., et al., 2005. Efficacy and safety of cholesterol-lowering treatment: pprospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366, 1267-1278.
    Bateman, B.T., Hernandez-Diaz, S., Fischer, M.A., Seely, E.W., Ecker, J.L., Franklin, J.M., Desai, R.J., Allen-Coleman, C., Mogun, H., Avorn, J., et al., 2015. Statins and congenital malformations: cohort study. BMJ. 350, h1035.
    Bateman, B.T., Hernandez-Diaz, S., Mogun, H., Fischer, M.A., Huybrechts, K.F., 2014. Statins during pregnancy and the risk of congenital malformations: a cohort study. Pharmacoepidemiol. Drug Saf. 23, 23-24.
    Boyle, A.K., Rinaldi, S.F., Rossi, A.G., Saunders, P.T.K., Norman, J.E., 2019. Repurposing simvastatin as a therapy for preterm labor: evidence from preclinical models. Faseb. J. 33, 2743-2758.
    Breier, G., 2000. Angiogenesis in embryonic development–a review. Placenta 21(Suppl. A), S11-S15.
    Burgazli, K.M., Bui, K.L., Mericliler, M., Albayrak, A.T., Parahuleva, M., Erdogan, A., 2013. The effects of different types of statins on proliferation and migration of HGF-induced human umbilical vein endothelial cells (HUVECS). Eur. Rev. Med. Pharmacol. Sci. 17, 2874-2883.
    Carmona, G., Gottig, S., Orlandi, A., Scheele, J., Bauerle, T., Jugold, M., Kiessling, F., Henschler, R., Zeiher, A.M., Dimmeler, S., et al., 2009. Role of the small GTPase rap1 for integrin activity regulation in endothelial cells and angiogenesis. Blood 113, 488-497.
    Chan, S.W., Lim, C.J., Guo, K., Ng, C.P., Lee, I., Hunziker, W., Zeng, Q., Hong, W.J., 2008. A role for taz in migration, invasion, and tumorigenesis of breast cancer cells. Canc. Res. 68, 2592-2598.
    Chen, Z., Xu, N., Chong, D.Y., Guan, S., Jiang, C., Yang, Z.Z., Li, C.J., 2018. Geranylgeranyl pyrophosphate synthase facilitates the organization of cardiomyocytes duringmid-gestation through modulating protein geranylgeranylation inmouse heart. Cardiovasc. Res. 114, 965-978.
    Chrzanowska-Wodnicka, M., 2010. Regulation of angiogenesis by a small GTPase rap1. Vasc. Pharmacol. 53, 1-10.
    Cordenonsi, M., Zanconato, F., Azzolin, L., Forcato, M., Rosato, A., Frasson, C., Inui, M., Montagner, M., Parenti, A.R., Poletti, A., et al., 2011. The hippo transducer taz confers cancer stem cell-related traits on breast cancer cells. Cell 147, 759-772.
    Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., Zanconato, F., Le Digabel, J., Forcato, M., Bicciato, S., et al., 2011. Role of yap/taz in mechanotransduction. Nature 474, 179-183.
    Eckert, G.P., Hooff, G.P., Strandjord, D.M., Igbavboa, U., Volmer, D.A., Muller, W.E., Wood, W.G., 2009. Regulation of the brain isoprenoids farnesyl- and geranylgeranylpyrophosphate is altered in male Alzheimer patients. Neurobiol. Dis. 35, 251-257.
    Folkman, J., 1995. Angiogenesis in cancer, vascular, rheumatoid and other disease.Nat. Med. 1, 27-30.
    Gleadle, J.M., Ratcliffe, P.J., 1998. Hypoxia and the regulation of gene expression.Mol. Med. Today 4, 122-129.
    Gonzalez, J.M., Pedroni, S.M.A., Girardi, G., 2014. Statins prevent cervical remodeling, myometrial contractions and preterm labor through a mechanism that involves hemoxygenase-1 and complement inhibition. Mol. Hum. Reprod. 20, 579-589.
    Hebert, P.R., Gaziano, J.M., Chan, K.S., Hennekens, C.H., 1997. Cholesterol lowering with statin drugs, risk of stroke, and total mortality. An overview of randomized trials. J. Am. Med. Assoc. 278, 313-321.
    Hegele, R.A., 1991. Hyperlipidemia in pregnancy. Can. Med. Assoc. J. 145, 1596.
    Hongu, T., Yamauchi, Y., Funakoshi, Y., Katagiri, N., Ohbayashi, N., Kanaho, Y., 2016. Pathological functions of the small GTPase arf6 in cancer progression:tumor angiogenesis and metastasis. Small GTPases 7, 47-53.
    Jiang, C., Diao, F., Sang, Y.J., Xu, N., Zhu, R.L., Wang, X.X., Chen, Z., Tao, W.W., Yao, B., Sun, H.X., et al., 2017. Ggpp-mediated protein geranylgeranylation in oocyte is essential for the establishment of oocyte-granulosa cell communication and primary-secondary follicle transition in mouse ovary. PLoS Genet. 13, e1006535.
    Jin, X., Zhao, W., Zhou, P., Niu, T., 2018. Yap knockdown inhibits proliferation and induces apoptosis of human prostate cancer du145 cells. Mol. Med. Rep. 17, 3783-3788.
    Jung, F., Haendeler, J., Hoffmann, J., Reissner, A., Dernbach, E., Zeiher, A.M., Dimmeler, S., 2002. Hypoxic induction of the hypoxia-inducible factor is mediated via the adaptor protein shc in endothelial cells. Circ. Res. 91, 38-45.
    Karalis, D.G., Hill, A.N., Clifton, S., Wild, R.A., 2016. The risks of statin use in pregnancy: a systematic review. J. Clin. Lipidol. 10, 1081-1090.
    Kisanuki, Y.Y., Hammer, R.E., Miyazaki, J., Williams, S.C., Richardson, J.A., Yanagisawa, M., 2001. Tie2-cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev. Biol. 230, 230-242.
    Kusters, D.M., Hassani Lahsinoui, H., van de Post, J.A., Wiegman, A., Wijburg, F.A., Kastelein, J.J., Hutten, B.A., 2012. Statin use during pregnancy: a systematic review and meta-analysis. Expert Rev. Cardiovasc Ther. 10, 363-378.
    Lai, L., Bohnsack, B.L., Niederreither, K., Hirschi, K.K., 2003. Retinoic acid regulates endothelial cell proliferation during vasculogenesis. Development 130, 6465-6474.
    Li, X., Liu, L., Tupper, J.C., Bannerman, D.D., Winn, R.K., Sebti, S.M., Hamilton, A.D., Harlan, J.M., 2002. Inhibition of protein geranylgeranylation and rhoa/rhoa kinase pathway induces apoptosis in human endothelial cells. J. Biol. Chem. 277, 15309-15316.
    Li, X.C., Liu, X.S., Xu, Y.J., He, Y.Z., Liu, J., Xie, M., 2015. Expression profile of apoptotic and proliferative proteins in hypoxic huvec treated with statins. Int. J.Oncol. 46, 677-684.
    Liu, D., Mei, X., Wang, L., Yang, X., 2017a. Rhoa inhibits apoptosis and increases proliferation of cultured spca1 lung cancer cells. Mol. Med. Rep. 15, 3963-3968.
    Liu, J., Jiang, S., Zhao, Y., Sun, Q., Zhang, J.Z., Shen, D., Wu, J., Shen, N., Fu, X., Sun, X.T., et al., 2018. Geranylgeranyl diphosphate synthase (GGPPS) regulates non-alcoholic fatty liver disease (NAFLD)-fibrosis progression by determining hepatic glucose/fatty acid preference under high-fat diet conditions. J. Pathol. 246, 277-288.
    Liu, M., Zhang, Z., Sampson, L., Zhou, X., Nalapareddy, K., Feng, Y.X., Akunuru, S., Melendez, J., Davis, A.K., Bi, F., et al., 2017b. Rhoa GTPase controls yapmediated EREG signaling in small intestinal stem cell maintenance. Stem Cell Rep. 9, 1961-1975.
    Liu, P., Jenkins, N.A., Copeland, N.G., 2003. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 13, 476-484.
    McTaggart, S., 2006. Isoprenylated proteins. Cell. Mol. Life Sci. 63, 255-267.
    Merajver, S.D., Usmani, S.Z., 2005. Multifaceted role of rho proteins in angiogenesis.J. Mammary Gland Biol. Neoplasia 10, 291-298.
    Mi, W., Lin, Q., Childress, C., Sudol, M., Robishaw, J., Berlot, C.H., Shabahang, M., Yang, W., 2015. Geranylgeranylation signals to the hippo pathway for breast cancer cell proliferation and migration. Oncogene 34, 3095-3106.
    Milgrom-Hoffman, M., Harrelson, Z., Ferrara, N., Zelzer, E., Evans, S.M., Tzahor, E., 2011. The heart endocardium is derived from vascular endothelial progenitors.Development 138, 4777-4787.
    Molnar, G., Dagher, M.C., Geiszt, M., Settleman, J., Ligeti, E., 2001. Role of prenylation in the interaction of rho-family small GTPases with GTPase activating proteins. Biochemistry 40, 10542-10549.
    Nasioudis, D., Doulaveris, G., Kanninen, T.T., 2019. Dyslipidemia in pregnancy and maternal-fetal outcome. Minerva Ginecol. 71, 155.
    Ohgushi, M., Minaguchi, M., Sasai, Y., 2015. Rho-signaling-directed yap/taz activity underlies the long-term survival and expansion of human embryonic stem cells.Cell Stem Cell 17, 448-461.
    Olsson, A.K., Dimberg, A., Kreuger, J., Claesson-Welsh, L., 2006. VEGF receptor signalling-in control of vascular function. Nat. Rev. Mol. Cell Biol. 7, 359-371.
    Oviedo, P.J., Sobrino, A., Laguna-Fernandez, A., Novella, S., Tarin, J.J., GarciaPerez, M.A., Sanchis, J., Cano, A., Hermenegildo, C., 2011. Estradiol induces endothelial cell migration and proliferation through estrogen receptor-enhanced rhoa/rock pathway. Mol. Cell. Endocrinol. 335, 96-103.
    Pages, G., Berra, E., Milanini, J., Levy, A.P., Pouyssegur, J., 2000. Stress-activated protein kinases (JNK and p38/HOG) are essential for vascular endothelial growth factor mRNA stability. J. Biol. Chem. 275, 26484-26491.
    Park, H.-J., Kong, D., Iruela-Arispe, L., Begley, U., Tang, D., Galper, J.B., 2002. 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors interfere with angiogenesis by inhibiting the geranylgeranylation of rhoa. Circ. Res. 91, 143-150.
    Park, H.J., Zhang, Y., Georgescu, S.P., Johnson, K.L., Kong, D., Galper, J.B., 2006.Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis. Stem Cell Rev. 2, 93-102.
    Pereira-Leal, J.B., Hume, A.N., Seabra, M.C., 2001. Prenylation of rab GTPases:molecular mechanisms and involvement in genetic disease. FEBS Lett. 498, 197-200.
    Perez-Sala, D., 2006. Protein isoprenylation in biology and disease: general overview and perspectives from studies with genetically engineered animals. Front. Biosci.:J. Vis. Literacy 12, 4456-4472.
    Piccolo, S., Dupont, S., Cordenonsi, M., 2014. The biology of YAP/TAZ: hippo signaling and beyond. Physiol. Rev. 94, 1287-1312.
    Qiu, J.Y., Hirschi, K.K., 2019. Endothelial cell development and its application to regenerative medicine. Circ. Res. 125, 489-501.
    Ratajska, A., Czarnowska, E., Kolodzinska, A., Kluzek, W., Lesniak, W., 2006. Vasculogenesis of the embryonic heart: origin of blood island-like structures. Anat.Rec. A. Discov. Mol. Cell. Evol. Biol. 288, 223-232.
    Reilly, J.E., Neighbors, J.D., Tong, H.X., Henry, M.D., Hohl, R.J., 2015. Targeting geranylgeranylation reduces adrenal gland tumor burden in a murine model of prostate cancer metastasis. Clin. Exp. Metastasis 32, 555-566.
    Risau, W., 1997. Mechanisms of angiogenesis. Nature 386, 671-674.
    Risau, W., Flamme, I., 1995. Vasculogenesis. Annu. Rev. Cell Dev. Biol. 11, 73-91.
    Rongish, B.J., Torry, R.J., Tucker, D.C., Tomanek, R.J., 1994. Neovascularization of embryonic rat hearts cultured in oculo closely mimics in-utero coronary vessel development. J. Vasc. Res. 31, 205-215.
    Sorrentino, G., Ruggeri, N., Specchia, V., Cordenonsi, M., Mano, M., Dupont, S., Manfrin, A., Ingallina, E., Sommaggio, R., Piazza, S., et al., 2014. Metabolic control of YAP and TAZ by the mevalonate pathway. Nat. Cell Biol. 16, 357-366.
    Tao, W.W., Wu, J., Xie, B.X., Zhao, Y.Y., Shen, N., Jiang, S., Wang, X.X., Xu, N., Jiang, C., Chen, S., et al., 2015. Lipid-induced muscle insulin resistance is mediated by GGPPs via modulation of the RhoA/Rho kinase signaling pathway. J.Biol. Chem. 290, 20086-20097.
    Trakadis, Y., Blaser, S., Hahn, C.D., Yoon, G., 2009. A case report of prenatal exposure to rosuvastatin and telmisartan. Paediatr. Child Health 14, 450-452.
    Vincent, L., Chen, W., Hong, L., Mirshahi, F., Mishal, Z., Mirshahi-Khorassani, T., Vannier, J.P., Soria, J., Soria, C., 2001. Inhibition of endothelial cell migration by cerivastatin, an HMG-CoA reductase inhibitor: contribution to its anti-angiogenic effect. FEBS Lett. 495, 159-166.
    Wang, C.B., Liu, X.H., He, R., Li, J.H., Pan, R., 2019. Prenylation-dependent ras inhibition by pamidronate inhibits pediatric acute myeloid leukemia stem and differentiated cell growth and survival. Biochem. Biophys. Res. Commun. 517, 439-444.
    Wang, X.X., Ying, P., Diao, F., Wang, Q., Ye, D., Jiang, C., Shen, N., Xu, N., Chen, W.B., Lai, S.S., et al., 2013. Altered protein prenylation in sertoli cells is associated with adult infertility resulting from childhood mumps infection. J. Exp.Med. 210, 1559-1574.
    Wejde, J., Blegen, H., Larsson, O., 1992. Requirement for mevalonate in the control of proliferation of human breast-cancer cells. Anticancer Res. 12, 317-324.
    Wu, R., Yang, H., Wan, J., Deng, X., Chen, L., Hao, S., Ma, L., 2018. Knockdown of the Hippo transducer YAP reduces proliferation and promotes apoptosis in the Jurkat leukemia cell. Mol. Med. Rep. 18, 5379-5388.
    Xia, Z., Tan, M.M., Wong, W.W.L., Dimitroulakos, J., Minden, M.D., Penn, L.Z., 2001.Blocking protein geranylgeranylation is essential for lovastatin-induced apoptosis of human acute myeloid leukemia cells. Leukemia 15, 1398-1407.
    Xiao, H., Qin, X., Ping, D., Zuo, K., 2013. Inhibition of Rho and Rac geranylgeranylation by atorvastatin is critical for preservation of endothelial junction integrity. PLoS One 8, e59233.
    Xu, N., Guan, S., Chen, Z., Yu, Y., Xie, J., Pan, F.Y., Zhao, N.W., Liu, L., Yang, Z.Z., Gao, X., et al., 2015. The alteration of protein prenylation induces cardiomyocyte hypertrophy through Rheb-mTORC1 signalling and leads to chronic heart failure.J. Pathol. 235, 672-685.
    Zhang, X., Zhao, H., Li, Y., Xia, D., Yang, L., Ma, Y., Li, H., 2018. The role of YAP/TAZ activity in cancer metabolic reprogramming. Mol. Canc. 17, 134.
    Zhao, B., Li, L., Wang, L., Wang, C.Y., Yu, J.D., Guan, K.L., 2012. Cell detachment activates the hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 26, 54-68.
    Zhou, Y.H., Huang, T.T., Cheng, A.S.L., Yu, J., Kang, W., To, K.F., 2016. The tead family and its oncogenic role in promoting tumorigenesis. Int. J. Mol. Sci. 17.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (105) PDF downloads (7) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return