[1] |
Berkholz, J., Eberle, R., Boller, K., Munz, B., 2018. siRNA-mediated inhibition of skNAC and Smyd1 expression disrupts myofibril organization: Immunofluorescence and electron microscopy study in C2C12 cells. Micron 108, 6-10.
|
[2] |
Bernick, E.P., Zhang, P.J., Du. S., 2010. Knockdown and overexpression of Unc-45b result in defective myofibril organization in skeletal muscles of zebrafish embryos. BMC Cell Biol. 11, 70.
|
[3] |
Busch-Nentwich, E., Kettleborough, R., Dooley, C.M., Scahill, C., Sealy, I., White, R., Herd, C., Mehroke, S., Wali, N., Carruthers, S., et al., 2013. Sanger Institute Zebrafish Mutation Project mutant data submission. ZFIN Direct Data Submission.
|
[4] |
Cai, M., Han, L., Liu, L., He, F., Chu, W., Zhang, J., Tian, Z., Du, S., 2019. Defective sarcomere assembly in smyd1a and smyd1b zebrafish mutants. FASEB J. 33, 6209-6225.
|
[5] |
Cornett, E.M., Ferry, L., Defossez, P.A., Rothbart. S.B., 2019. Lysine methylation regulators moonlighting outside the epigenome. Mol. Cell 75, 1092-1101.
|
[6] |
Coyan, G.N., Zinn, M.D., West, S.C., Sharma, M.S., 2019. Heart transplantation from biventricular support in infant with novel smyd1 mutation. Pediatr Cardiol. 40, 1745-1747.
|
[7] |
de Winter, J.M., Ottenheijm, C.A.C., 2017. Sarcomere dysfunction in nemaline myopathy. J. Neuromuscul Dis. 4, 99-113.
|
[8] |
Diogo, R., Hinits, Y., Hughes, S.M., 2008. Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods. BMC Dev. Biol. 8, 24.
|
[9] |
Donlin, L.T., Andresen, C., Just, S., Rudensky, E., Pappas, C.T., Kruger, M., Jacobs, E.Y., Unger, A., Zieseniss, A., Dobenecker, M.W., et al., 2012. Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization. Genes Dev. 26, 114-9.
|
[10] |
Du, S.J., Rotllant, J., Tan, X., 2006. Muscle-specific expression of the smyd1 gene is controlled by its 5.3-kb promoter and 5'-flanking sequence in zebrafish embryos. Dev. Dyn. 235, 3306-3315.
|
[11] |
Du, S.J., Li, H., Bian, Y., Zhong, Y., 2008. Heat-shock protein 90α1 is required for organized myofibril assembly in skeletal muscles of zebrafish embryos. Proc Natl Acad Sci U S A. 105, 554-559.
|
[12] |
Du, S.J., Tan, X., Zhang, J., 2014. SMYD proteins: key regulators in skeletal and cardiac muscle development and function. Anat. Rec. (Hoboken) 297, 1650-1662.
|
[13] |
Espinosa-Cantu, A., Ascencio, D., Barona-Gomez, F., DeLuna, A., 2015. Gene duplication and the evolution of moonlighting proteins. Front Genet. 6, 227.
|
[14] |
Etard, C., Behra, M., Fischer, N., Hutcheson, D., Geisler, R., Strahle, U., 2007. The UCS factor Steif/Unc-45b interacts with the heat shock protein Hsp90α during myofibrillogenesis. Dev. Biol. 308, 133-143.
|
[15] |
Etard, C., Armant, O., Roostalu, U., Gourain, V., Ferg, M., Strahle, U., 2015. Loss of function of myosin chaperones triggers Hsf1-mediated transcriptional response in skeletal muscle cells. Genome Biol. 16, 267.
|
[16] |
Fan, L.L., Din,g D.B., Huang, H., Chen, Y.Q., Jin, J.Y., Xia, K., Xiang, R., 2019. A de novo mutation of SMYD1 (p.F272L) is responsible for hypertrophic cardiomyopathy in a Chinese patient. Clin. Chem. Lab. Med. 57, 532-539.
|
[17] |
Franklin, S., Kimball, T., Rasmussen, T.L., Rosa-Garrido, M., Chen, H., Tran, T., Miller, M.R., Gray, R., Jiang, S., Ren, S., et al., 2016. The chromatin-binding protein Smyd1 restricts adult mammalian heart growth. Am. J. Physiol. Heart Circ. Physiol. 311, H1234-H1247.
|
[18] |
Gao, J., Li, J., Li, B.J., Yagil, E., Zhang, J., Du, S.J., 2014. Expression and functional characterization of Smyd1a in myofibril organization of skeletal muscles. PloS one. 9, e86808.
|
[19] |
Gottlieb, P.D., Pierce, S.A., Sims, R.J., Yamagishi, H., Weihe, E.K., Harriss, J.V., Maika, S.D., Kuziel, W.A., King, H.L., Olson, E.N., et al., 2002. Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat. Genet. 31, 25-32.
|
[20] |
Hardy, M., Harris, I., Perry, S.V., Stone, D., 1970. Epsilon-N-monomethyl-lysine and trimethyl-lysine in myosin. Biochem J. 117, 44P-45P.
|
[21] |
Hawkins, T.A., Haramis, A.P., Etard, C., Prodromou, C., Vaughan, C.K., Ashworth, R., Ray, S., Behra, M., Holder, N., Talbot, W.S., et al., 2008. The ATPase-dependent chaperoning activity of Hsp90a regulates thick filament formation and integration during skeletal muscle myofibrillogenesis. Development 135, 1147-1156.
|
[22] |
Hernandez, L.P., Patterson, S.E., Devoto, S.H., 2005. The development of muscle fiber type identity in zebrafish cranial muscles. Anat. Embryol. (Berl) 209, 323-334.
|
[23] |
Huszar, G., Elzinga, M., 1969. Epsilon-N-methyl lysine in myosin. Nature 223, 834-5.
|
[24] |
Huszar, G., 1972. Amino acid sequences around the two -N-trimethyllysine residues in rabbit skeletal muscle myosin. J. Biol. Chem. 247, 4057-4062.
|
[25] |
Hwang, P.M., Sykes, B.D., 2015. Targeting the sarcomere to correct muscle function. Nat. Rev. Drug. Discov. 14, 313-28.
|
[26] |
Just, S., Meder, B., Berger, I.M., Etard, C., Trano, N., Patzel, E., Hassel, D., Marquart, S., Dahme, T., Vogel, B., et al., 2011. The myosin-interacting protein SMYD1 is essential for sarcomere organization. J. Cell Sci. 124, 3127-3136.
|
[27] |
Laing, N.G., Nowak, K.J., 2005. When contractile proteins go bad: the sarcomere and skeletal muscle disease. Bioessays 27, 809-822.
|
[28] |
Li, H., Zhong, Y., Wang, Z., Gao, J., Xu, J., Chu, W., Zhang, J., Fang, S., Du, S.J., 2013. Smyd1b is required for skeletal and cardiac muscle function in zebrafish. Mol. Biol. Cell 24, 3511-3521.
|
[29] |
Li, S., Wen, H., Du, S. J., 2020. Defective sarcomere organization and reduced larval locomotion and fish survival in slow muscle heavy chain 1 (smyhc1) mutants. FASEB J. 34, 1378-1397.
|
[30] |
Martin, T.G., Kirk, J.A., 2020. Under construction: The dynamic assembly, maintenance, and degradation of the cardiac sarcomere. J. Mol. Cell. Cardiol. 148, 9-102.
|
[31] |
Meyer, A., Schartl, M., 1999. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr. Opin. Cell Biol. 11, 699-704.
|
[32] |
Murn, J., Shi, Y., 2017. The winding path of protein methylation research: milestones and new frontiers. Nat. Rev. Mol. Cell Biol. 18, 517-527.
|
[33] |
Nagandla, H., Lopez, S., Yu, W., Rasmussen, T.L., Tucker, H.O., Schwartz, R.J., Stewart, M.D., 2016. Defective myogenesis in the absence of the muscle-specific lysine methyltransferase SMYD1. Dev. Biol. 410, 86-97.
|
[34] |
Noden, D.M., 1986. Patterning of avian craniofacial muscles. Dev. Biol. 116, 347-356.
|
[35] |
Noden, D.M., Francis-West, P., 2006. The differentiation and morphogenesis of craniofacial muscles. Dev. Dyn. 235, 1194-218.
|
[36] |
Ohno, S., Wolf, U., Atki,n N.B., 1968. Evolution from fish to mammals by gene duplication. Hereditas 59, 169-187.
|
[37] |
Ohno, S., 1970. Evolution by gene duplication, London: George Alien & Unwin Ltd. Berlin: Springer-Verlag.
|
[38] |
Paone, C., Rudeck, S., Etard, C., Strahle, U., Rottbauer, W., Just, S., 2018. Loss of zebrafish Smyd1a interferes with myofibrillar integrity without triggering the misfolded myosin response. Biochem. Biophys. Res. Commun. 496, 339-345.
|
[39] |
Park, C.Y., Pierce, S.A., von Drehle, M., Ivey, K.N., Morgan, J.A., Blau, H.M., Srivastava, D., 2010. skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration. Proc Natl Acad Sci U S A. 107, 20750-20755.
|
[40] |
Phan, D., Rasmussen, T.L., Nakagawa, O., McAnally, J., Gottlieb, P.D., Tucker, P.W., Richardson, J.A., Bassel-Duby, R., Olson, E.N., 2005. BOP, a regulator of right ventricular heart development, is a direct transcriptional target of MEF2C in the developing heart. Development 132, 2669-2678.
|
[41] |
Prill, K., Windsor Reid, P., Wohlgemuth, S.L., Pilgrim, D.B., 2015. Still heart encodes a structural hmt, smyd1b, with chaperone-like function during fast muscle sarcomere assembly. PloS One 10, e0142528.
|
[42] |
Rasmussen, T.L., Ma, Y., Park, C.Y., Harriss, J., Pierce, S.A., Dekker, J.D., Valenzuela, N., Srivastava, D., Schwartz, R.J., Stewart, M.D., et al., 2015. Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses. PLoS One 10, e0121765.
|
[43] |
Rasmussen, T.L., Tucker, H.O., 2018. Loss of smyd1 results in perinatal lethality via selective defects within myotonic muscle descendants. Diseases. 7, 1.
|
[44] |
Rastogi, S., Liberles, D.A., 2005. Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evol. Biol. 5, 28.
|
[45] |
Rice, D.P., 2005. Craniofacial anomalies: from development to molecular pathogenesis. Curr. Mol. Med.5, 699-722.
|
[46] |
Sambasivan, R., Kuratani, S., Tajbakhsh, S., 2011. An eye on the head: the development and evolution of craniofacial muscles. Development 138, 2401-2415.
|
[47] |
Sanger, J.W., Wang, J., Fan, Y., White, J., Sanger, J.M., 2010. Assembly and dynamics of myofibrils. J. Biomed. Biotechnol. 2010, 858606.
|
[48] |
Sanger, J.W., Wang, J., Fan, Y., White, J., Mi-Mi, L., Dube, D.K., Sanger, J.M., Pruyne, D., 2017. Assembly and maintenance of myofibrils in striated muscle. Handb. Exp. Pharmacol. 235, 39-75.
|
[49] |
Schilling, T.F., Kimmel, C.B., 1994. Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. Development 120, 483-494.
|
[50] |
Schilling, T.F., Kimmel, C.B., 1997. Musculoskeletal patterning in the pharyngeal segments of the zebrafish embryo. Development 124, 2945-2960.
|
[51] |
Sims, R.J., 3rd, Weihe, E.K., Zhu, L., O'Malley, S., Harriss, J.V., Gottlieb, P.D., 2002. m-Bop, a repressor protein essential for cardiogenesis, interacts with skNAC, a heart- and muscle-specific transcription factor. J. Biol. Chem. 277, 26524-26529.
|
[52] |
Sparrow, J.C., Schock, F., 2009. The initial steps of myofibril assembly: integrins pave the way. Nat. Rev. Mol. Cell Biol. 10, 293-298.
|
[53] |
Stewart, M.D., Lopez, S., Nagandla, H., Soibam, B., Benham, A., Nguyen, J., Valenzuela, N., Wu, H.J., Burns, A.R., Rasmussen, T.L., et al., 2016. Mouse myofibers lacking the SMYD1 methyltransferase are susceptible to atrophy, internalization of nuclei and myofibrillar disarray. Dis. Model Mech. 9, 347-359.
|
[54] |
Sun, X.J., Xu, P.F., Zhou, T., Hu, M., Fu, C.T., Zhang, Y., Jin, Y., Chen, Y., Chen, S.J., Huang, Q.H., Liu, T.X., Chen, Z., 2008. Genome-wide survey and developmental expression mapping of zebrafish SET domain-containing genes. PloS one. 3, e1499.
|
[55] |
Sweeney, H.L., Hammers, D.W., 2018. Muscle contraction. Cold Spring Harbor perspectives in Biology. 10.
|
[56] |
Tan, X., Rotllant, J., Li, H., De Deyne, P., Du, S.J., 2006. SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos. Proc Natl Acad Sci U S A. 103, 2713-2718.
|
[57] |
Thisse, C., Thisse, B., 2008. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59-69.
|
[58] |
Tong, S.W., Elzinga, M., 1983. The sequence of the NH2-terminal 204-residue fragment of the heavy chain of rabbit skeletal muscle myosin. J. Biol. Chem. 258, 13100-13110.
|
[59] |
Walker, M.B., Kimmel, C.B., 2007. A two-color acid-free cartilage and bone stain for zebrafish larvae. Biotech. Histochem. 82, 23-28.
|
[60] |
Warren, J.S., Tracy, C.M., Miller, M.R., Makaju, A., Szulik, M.W., Oka, S.I., Yuzyuk, T.N., Cox, J.E., Kumar, A., Lozier, B.K., et al., 2018. Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart. Proc. Natl. Acad. Sci. U. S. A. 115, E7871-E7880.
|
[61] |
Weinberg, E.S., Allende, M.L., Kelly, C.S., Abdelhamid, A., Murakami, T., Andermann, P., Doerre, O.G., Grunwald, D.J., Riggleman, B., 1996. Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos. Development 122, 271-280.
|
[62] |
Wohlgemuth, S.L., Crawford, B.D., Pilgrim, D.B., 2007. The myosin co-chaperone UNC-45 is required for skeletal and cardiac muscle function in zebrafish. Dev. Biol. 303, 483-492.
|
[63] |
Wu, Z., Connolly, J., Biggar, K.K., 2017. Beyond histones - the expanding roles of protein lysine methylation. FEBS J. 284, 2732-2744.
|
[64] |
Xu, J., Gao, J., Li, J., Xue, L., Clark, K.J., Ekker, S.C., Du, S.J., 2012. Functional analysis of slow myosin heavy chain 1 and myomesin-3 in sarcomere organization in zebrafish embryonic slow muscles. J. Genet. Genomics. 39, 69-80.
|
[65] |
Yang, X. D., Lamb A. & Chen, L. F., 2009. Methylation, a new epigenetic mark for protein stability. Epigenetics 4, 429-433.
|
[66] |
Ziermann, J.M., Diogo, R., Noden, D.M., 2018. Neural crest and the pa tterning of vertebrate craniofacial muscles. Genesis 56, e23097.
|