[1] |
Arslan, Z., Hermanns, V., Wurm, R., Wagner, R., Pul, U., 2014. Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system. Nucleic Acids Res. 42, 7884-7893.
|
[2] |
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A., Horvath, P., 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712.
|
[3] |
Bernheim, A., Calvo-Villamanan, A., Basier, C., Cui, L., Rocha, E.P.C., Touchon, M., Bikard, D., 2017. Inhibition of NHEJ repair by type II-A CRISPR-Cas systems in bacteria. Nat. Commun. 8, 2094.
|
[4] |
Brenac, L., Baidoo, E.E.K., Keasling, J.D., Budin, I., 2019. Distinct functional roles for hopanoid composition in the chemical tolerance of Zymomonas mobilis. Molecular microbiology 112, 1564-1575.
|
[5] |
Brouns, S.J., Jore, M.M., Lundgren, M., Westra, E.R., Slijkhuis, R.J., Snijders, A.P., Dickman, M.J., Makarova, K.S., Koonin, E.V., van der Oost, J., 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960-964.
|
[6] |
Csorgo, B., Leon, L.M., Chau-Ly, I.J., Vasquez-Rifo, A., Berry, J.D., Mahendra, C., Crawford, E.D., Lewis, J.D., Bondy-Denomy, J., 2020. A compact Cascade-Cas3 system for targeted genome engineering. Nat. Methods 17, 1183-1190.
|
[7] |
Datsenko, K.A., Pougach, K., Tikhonov, A., Wanner, B.L., Severinov, K., Semenova, E., 2012. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat. Commun. 3, 945.
|
[8] |
Deveau, H., Barrangou, R., Garneau, J.E., Labonte, J., Fremaux, C., Boyaval, P., Romero, D.A., Horvath, P., Moineau, S., 2008. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. Journal of bacteriology 190, 1390-1400.
|
[9] |
Dillard, K.E., Brown, M.W., Johnson, N.V., Xiao, Y., Dolan, A., Hernandez, E., Dahlhauser, S.D., Kim, Y., Myler, L.R., Anslyn, E.V., et al., 2018. Assembly and translocation of a CRISPR-Cas primed acquisition complex. Cell 175, 934-946.e15.
|
[10] |
Fineran, P.C., Charpentier, E., 2012. Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information. Virology 434, 202-209.
|
[11] |
Fineran, P.C., Gerritzen, M.J., Suarez-Diez, M., Kunne, T., Boekhorst, J., van Hijum, S.A., Staals, R.H., Brouns, S.J., 2014. Degenerate target sites mediate rapid primed CRISPR adaptation. Proc. Natl. Acad. Sci. U. S. A. 111, E1629-1638.
|
[12] |
Jackson, S.A., McKenzie, R.E., Fagerlund, R.D., Kieper, S.N., Fineran, P.C., Brouns, S.J., 2017. CRISPR-Cas: Adapting to change. Science 356, eaal5056.
|
[13] |
Kerr, A.L., Jeon, Y.J., Svenson, C.J., Rogers, P.L., Neilan, B.A., 2011. DNA restriction-modification systems in the ethanologen, Zymomonas mobilis ZM4. Appl. Microbiol. Biotechnol. 89, 761-769.
|
[14] |
Kunne, T., Kieper, S.N., Bannenberg, J.W., Vogel, A.I., Miellet, W.R., Klein, M., Depken, M., Suarez-Diez, M., Brouns, S.J., 2016. Cas3-derived target DNA degradation fragments fuel primed CRISPR adaptation. Mol. Cell 63, 852-864.
|
[15] |
Lee, C., Kim, J., Shin, S.G., Hwang, S., 2006. Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J. Biotechnol. 123, 273-280.
|
[16] |
Levy, A., Goren, M.G., Yosef, I., Auster, O., Manor, M., Amitai, G., Edgar, R., Qimron, U., Sorek, R., 2015. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520, 505-510.
|
[17] |
Li, M., Wang, R., Xiang, H., 2014a. Haloarcula hispanica CRISPR authenticates PAM of a target sequence to prime discriminative adaptation. Nucleic Acids Res. 42, 7226-7235.
|
[18] |
Li, M., Wang, R., Zhao, D., Xiang, H., 2014b. Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process. Nucleic Acids Res. 42, 2483-2492.
|
[19] |
Liu, T., Li, Y., Wang, X., Ye, Q., Li, H., Liang, Y., She, Q., Peng, N., 2015. Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition. Nucleic Acids Res. 43, 1044-1055.
|
[20] |
Liu, Z., Sun, M., Liu, J., Liu, T., Ye, Q., Li, Y., Peng, N., 2020. A CRISPR-associated factor Csa3a regulates DNA damage repair in Crenarchaeon Sulfolobus islandicus. Nucleic Acids Res. 48, 9681-9693.
|
[21] |
Marraffini, L.A., Sontheimer, E.J., 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843-1845.
|
[22] |
Mojica, F.J., Diez-Villasenor, C., Garcia-Martinez, J., Almendros, C., 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733-740.
|
[23] |
Pecoraro, V., Zerulla, K., Lange, C., Soppa, J., 2011. Quantification of ploidy in proteobacteria revealed the existence of monoploid, (mero-)oligoploid and polyploid species. PloS one 6, e16392.
|
[24] |
Richter, C., Dy, R.L., McKenzie, R.E., Watson, B.N., Taylor, C., Chang, J.T., McNeil, M.B., Staals, R.H., Fineran, P.C., 2014. Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic Acids Res. 42, 8516-8526.
|
[25] |
Savitskaya, E., Semenova, E., Dedkov, V., Metlitskaya, A., Severinov, K., 2013. High-throughput analysis of type I-E CRISPR/Cas spacer acquisition in E. coli. RNA Biol. 10, 716-725.
|
[26] |
Semenova, E., Jore, M.M., Datsenko, K.A., Semenova, A., Westra, E.R., Wanner, B., van der Oost, J., Brouns, S.J., Severinov, K., 2011. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc. Natl. Acad. Sci. U. S. A. 108, 10098-10103.
|
[27] |
Sfeir, A., Symington, L.S., 2015. Microhomology-Mediated End Joining: A Back-up Survival Mechanism or Dedicated Pathway? Trends Biochem. Sci. 40, 701-714.
|
[28] |
Staals, R.H., Jackson, S.A., Biswas, A., Brouns, S.J., Brown, C.M., Fineran, P.C., 2016. Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR-Cas system. Nat. Commun. 7, 12853.
|
[29] |
Stachler, A.E., Turgeman-Grott, I., Shtifman-Segal, E., Allers, T., Marchfelder, A., Gophna, U., 2017. High tolerance to self-targeting of the genome by the endogenous CRISPR-Cas system in an archaeon. Nucleic Acids Res. 45, 5208-5216.
|
[30] |
Sun, B., Yang, J., Yang, S., Ye, R.D., Chen, D., Jiang, Y., 2018. A CRISPR-Cpf1-assisted non-homologous end joining genome editing system of Mycobacterium smegmatis. Biotechnology journal 13, e1700588.
|
[31] |
Swarts, D.C., Mosterd, C., van Passel, M.W., Brouns, S.J., 2012. CRISPR interference directs strand specific spacer acquisition. PLoS One 7, e35888.
|
[32] |
van der Oost, J., Jore, M.M., Westra, E.R., Lundgren, M., Brouns, S.J., 2009. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends in biochemical sciences 34, 401-407.
|
[33] |
Vercoe, R.B., Chang, J.T., Dy, R.L., Taylor, C., Gristwood, T., Clulow, J.S., Richter, C., Przybilski, R., Pitman, A.R., Fineran, P.C., 2013. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet. 9, e1003454.
|
[34] |
Watson, B.N.J., Easingwood, R.A., Tong, B., Wolf, M., Salmond, G.P.C., Staals, R.H.J., Bostina, M., Fineran, P.C., 2019. Different genetic and morphological outcomes for phages targeted by single or multiple CRISPR-Cas spacers. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 374, 20180090.
|
[35] |
Wei, Y., Terns, R.M., Terns, M.P., 2015. Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation. Genes Dev. 29, 356-361.
|
[36] |
Westra, E.R., Swarts, D.C., Staals, R.H., Jore, M.M., Brouns, S.J., van der Oost, J., 2012. The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity. Annu. Rev. Genet. 46, 311-339.
|
[37] |
Yang, S., Mohagheghi, A., Franden, M.A., Chou, Y.C., Chen, X., Dowe, N., Himmel, M.E., Zhang, M., 2016. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars. Biotechnol. Biofuels 9, 189.
|
[38] |
Yeh, C.D., Richardson, C.D., Corn, J.E., 2019. Advances in genome editing through control of DNA repair pathways. Nature Cell Biology 21, 1468-1478.
|
[39] |
Yosef, I., Goren, M.G., Qimron, U., 2012. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res. 40, 5569-5576.
|
[40] |
Zhang, Z., Pan, S., Liu, T., Li, Y., Peng, N., 2019. Cas4 Nucleases Can Effect Specific Integration of CRISPR Spacers. J. Bacteriol. 201, e00747-00718.
|
[41] |
Zheng, Y., Han, J., Wang, B., Hu, X., Li, R., Shen, W., Ma, X., Ma, L., Yi, L., Yang, S., et al., 2019. Characterization and repurposing of the endogenous Type I-F CRISPR-Cas system of Zymomonas mobilis for genome engineering. Nucleic Acids Res. 47, 11461-11475.
|