[1] |
Ammiraju, J.S., Fan, C., Yu, Y., Song, X., Cranston, K.A., Pontaroli, A.C., Lu, F., Sanyal, A., Jiang, N., Rambo, T., et al., 2010. Spatio-temporal patterns of genome evolution in allotetraploid species of the genus Oryza. Plant J. 63, 430−442.
|
[2] |
Bailey-Serres, J., Parker, J.E., Ainsworth, E.A., Oldroyd, G.E.D., and Schroeder, J.I., 2019. Genetic strategies for improving crop yields. Nature 575, 109−118.
|
[3] |
Chen, E., Huang, X., Tian, Z., Wing, R.A., and Han, B., 2019a. The genomics of Oryza species provides insights into rice domestication and heterosis. Annu. Rev. Plant Biol. 70, 639−665.
|
[4] |
Chen, K., Wang, Y., Zhang, R., Zhang, H., and Gao, C., 2019b. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667−697.
|
[5] |
Gao, H., Jin, M., Zheng, X.M., Chen, J., Yuan, D., Xin, Y., Wang, M., Huang, D., Zhang, Z., Zhou, K., et al., 2014. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc. Natl. Acad. Sci. U. S. A. 111, 16337−16342.
|
[6] |
Huang, X., Kurata, N., Wei, X., Wang, Z.X., Wang, A., Zhao, Q., Zhao, Y., Liu, K., Lu, H., Li, W., et al., 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature. 490, 497−501.
|
[7] |
Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X., et al., 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541−544.
|
[8] |
Konishi, S., Izawa, T., Lin, S.Y., Ebana, K., Fukuta, Y., Sasaki, T., and Yano, M., 2006. An SNP caused loss of seed shattering during rice domestication. Science 312, 1392−1396.
|
[9] |
Li, T., Yang, X., Yu, Y., Si, X., Zhai, X., Zhang, H., Dong, W., Gao, C., and Xu, C., 2018. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36, 1160−1163 .
|
[10] |
Luo, J., Liu, H., Zhou, T., Gu, B., Huang, X., Shangguan, Y., Zhu, J., Li, Y., Zhao, Y., Wang, Y., et al., 2013. An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell 25, 3360−3376.
|
[11] |
Mao, H., Sun, S., Yao, J., Wang, C., Yu, S., Xu, C., Li, X., and Zhang, Q., 2010. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc. Natl. Acad. Sci. U. S. A. 107, 19579−19584.
|
[12] |
Mohammed, S., Samad, A.A., and Rahmat, Z., 2019. Agrobacterium-mediated transformation of rice: constraints and possible solutions. Rice Science 26, 133−146.
|
[13] |
Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Swapan, D., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G.S., et al., 2002. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416, 701−702.
|
[14] |
Stein, J.C., Yu, Y., Copetti, D., Zwickl, D.J., Zhang, L., Zhang, C., Chougule, K., Gao, D., Iwata, A., Goicoechea, J.L., et al., 2018. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nat. Genet. 50, 285−296.
|
[15] |
Tian, Z., Wang, J.W., Li, J., and Han, B., 2020. Designing future crops: challenges and strategies for sustainable agriculture. Plant J. DOI: 10.1111/tpj.15107.
|
[16] |
Van de Peer, Y., Mizrachi, E., and Marchal, K., 2017. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411−424.
|
[17] |
Wing, R.A., Purugganan, M.D., and Zhang, Q., 2018. The rice genome revolution: from an ancient grain to Green Super Rice. Nat. Rev. Genet. 19, 505−517.
|
[18] |
Xue, W., Xing, Y., Weng, X., Zhao, Y., Tang, W., Wang, L., Zhou, H., Yu, S., Xu, C., Li, X., et al., 2008. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40, 761−767.
|
[19] |
Yu, H., Lin, T., Meng, X., Du, H., Zhang, J., Liu, G., Chen, M., Jing, Y., Kou, L., Li, X., et al., 2021. A route to de novo domestication of wild allotetraploid rice. Cell DOI: 10.1016/j.cell.2021.01.013.
|
[20] |
Zeng, D., Tian, Z., Rao, Y., Dong, G., Yang, Y., Huang, L., Leng, Y., Xu, J., Sun, C., Zhang, G., et al., 2017. Rational design of high-yield and superior-quality rice. Nat. Plants 3, 17031.
|
[21] |
Zhao, Q., Feng, Q., Lu, H., Li, Y., Wang, A., Tian, Q., Zhan, Q., Lu, Y., Zhang, L., Huang, T., et al., 2018. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat. Genet. 50, 278−284.
|