5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 2
Feb.  2021
Turn off MathJax
Article Contents

Leptin gene-targeted editing in ob/ob mouse adipose tissue based on the CRISPR/Cas9 system

doi: 10.1016/j.jgg.2021.01.008
More Information
  • Corresponding author: E-mail address: Jinsi@hust.edu.cn (Si Jin)
  • Received Date: 2020-10-27
  • Accepted Date: 2021-01-28
  • Rev Recd Date: 2021-01-25
  • Available Online: 2021-03-30
  • Publish Date: 2021-02-20
  • Gene therapy has become the most effective treatment for monogenic diseases. Congenital LEPTIN deficiency is a rare autosomal recessive monogenic obesity syndrome caused by mutations in the Leptin gene. Ob/ob mouse is a monogenic obesity model, which carries a homozygous point mutation of C to T in Exon 2 of the Leptin gene. Here, we attempted to edit the mutated Leptin gene in ob/ob mice preadipocytes and inguinal adipose tissues using CRISPR/Cas9 to correct the C to T mutation and restore the production of LEPTIN protein by adipocytes. The edited preadipocytes exhibit a correction of 5.5% ofLeptin alleles and produce normal LEPTIN protein when differentiated into mature adipocytes. The ob/ob mice display correction of 1.67% of Leptin alleles, which is sufficient to restore the production and physiological functions of LEPTIN protein, such as suppressing appetite and alleviating insulin resistance. Our study suggests CRISPR/Cas9-mediated in situ genome editing as a feasible therapeutic strategy for human monogenic diseases, and paves the way for further research on efficient delivery system in potential future clinical application.
  • loading
  • [1]
    Bialk, P., Sansbury, B., Rivera-Torres, N., Bloh, K., Man, D., Kmiec, E.B., 2016. Analyses of point mutation repair and allelic heterogeneity generated by CRISPR/Cas9 and single-stranded DNA oligonucleotides. Sci. Rep. 6, 32681.
    [2]
    Brabetz, O., Alla, V., Angenendt, L., Schliemann, C., Berdel, W.E., Arteaga, M.F., Mikesch, J.H., 2017. RNA-Guided CRISPR-Cas9 System-Mediated Engineering of Acute Myeloid Leukemia Mutations. Mol. Ther. Nucleic Acids 6, 243-248.
    [3]
    Crystal, R.G., 2014. Adenovirus: the first effective in vivo gene delivery vector. Hum. Gene Ther. 25, 3-11.
    [4]
    Danielsson, K., Mun, L.J., Lordemann, A., Mao, J., Lin, C.H., 2014. Next-generation sequencing applied to rare diseases genomics. Expert. Rev. Mol. Diagn. 14, 469-487.
    [5]
    Dayal, D., Jain, H., Attri, S.V., Bharti, B., Bhalla, A.K., 2014. Relationship of High Sensitivity C-Reactive Protein Levels to Anthropometric and other Metabolic Parameters in Indian Children with Simple Overweight and Obesity. J. Clin. Diagn. Res. 8, Pc05-08.
    [6]
    Farooqi, I.S., Matarese, G., Lord, G.M., Keogh, J.M., Lawrence, E., Agwu, C., Sanna, V., Jebb, S.A., Perna, F., Fontana, S., Lechler, R.I., DePaoli, A.M., O’Rahilly, S., 2002. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Invest. 110, 1093-1103.
    [7]
    Fatima, W., Shahid, A., Imran, M., Manzoor, J., Hasnain, S., Rana, S., Mahmood, S., 2011. Leptin deficiency and leptin gene mutations in obese children from Pakistan. Int. J. Pediatr. Obes. 6, 419-427.
    [8]
    Feng, H., Zheng, L., Feng, Z., Zhao, Y., Zhang, N., 2013. The role of leptin in obesity and the potential for leptin replacement therapy. Endocrine 44, 33-39.
    [9]
    Frank-Podlech, S., von Schnurbein, J., Veit, R., Heni, M., Machann, J., Heinze, J.M., Kullmann, S., Manzoor, J., Mahmood, S., Haring, H.U., Preissl, H., Wabitsch, M., Fritsche, A., 2018. Leptin Replacement Reestablishes Brain Insulin Action in the Hypothalamus in Congenital Leptin Deficiency. Diabetes Care 41, 907-910.
    [10]
    Funcke, J.B., von Schnurbein, J., Lennerz, B., Lahr, G., Debatin, K.M., Fischer-Posovszky, P., Wabitsch, M., 2014. Monogenic forms of childhood obesity due to mutations in the leptin gene. Mol. Cell Pediatr. 1, 3.
    [11]
    Garris, D.R., Garris, B.L., 2004. Genomic modulation of diabetes (db/db) and obese (ob/ob) mutation-induced hypercytolipidemia: cytochemical basis of female reproductive tract involution. Cell Tissue Res. 316, 233-241.
    [12]
    Guan, Y., Ma, Y., Li, Q., Sun, Z., Ma, L., Wu, L., Wang, L., Zeng, L., Shao, Y., Chen, Y., Ma, N., Lu, W., Hu, K., Han, H., Yu, Y., Huang, Y., Liu, M., Li, D., 2016. CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol. Med. 8, 477-488.
    [13]
    He, Z., Proudfoot, C., Mileham, A.J., McLaren, D.G., Whitelaw, C.B., Lillico, S.G., 2015. Highly efficient targeted chromosome deletions using CRISPR/Cas9. Biotechnol. Bioeng. 112, 1060-1064.
    [14]
    Holkers, M., Maggio, I., Henriques, S.F., Janssen, J.M., Cathomen, T., Goncalves, M.A., 2014. Adenoviral vector DNA for accurate genome editing with engineered nucleases. Nat. Methods 11, 1051-1057.
    [15]
    Kim, J., Kim, J.H., Choi, K.J., Kim, P.H., Yun, C.O., 2007. E1A- and E1B-Double mutant replicating adenovirus elicits enhanced oncolytic and antitumor effects. Hum. Gene. Ther. 18, 773-786.
    [16]
    Kim, J.M., Kim, D., Kim, S., Kim, J.S., 2014. Genotyping with CRISPR-Cas-derived RNA-guided endonucleases. Nat. Commun. 5, 3157.
    [17]
    Lau, C.H., Suh, Y., 2017. In vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease. F1000Res. 6, 2153.
    [18]
    Li, H.L., Gee, P., Ishida, K., Hotta, A., 2016. Efficient genomic correction methods in human iPS cells using CRISPR-Cas9 system. Methods 101, 27-35.
    [19]
    Liu, Y., Yang, L., Zhang, Y., Liu, X., Wu, Z., Gilbert, R.G., Deng, B., Wang, K., 2020. Dendrobium officinale polysaccharide ameliorates diabetic hepatic glucose metabolism via glucagon-mediated signaling pathways and modifying liver-glycogen structure. J. Ethnopharmacol. 248, 112308.
    [20]
    Maruyama, T., Dougan, S.K., Truttmann, M.C., Bilate, A.M., Ingram, J.R., Ploegh, H.L., 2015. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33, 538-542.
    [21]
    Montague, C.T., Farooqi, I.S., Whitehead, J.P., Soos, M.A., Rau, H., Wareham, N.J., Sewter, C.P., Digby, J.E., Mohammed, S.N., Hurst, J.A., Cheetham, C.H., Earley, A.R., Barnett, A.H., Prins, J.B., O’Rahilly, S., 1997. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387, 903-908.
    [22]
    Paquet, D., Kwart, D., Chen, A., Sproul, A., Jacob, S., Teo, S., Olsen, K.M., Gregg, A., Noggle, S., Tessier-Lavigne, M., 2016. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533, 125-129.
    [23]
    Saeed, S., Bonnefond, A., Manzoor, J., Shabbir, F., Ayesha, H., Philippe, J., Durand, E., Crouch, H., Sand, O., Ali, M., Butt, T., Rathore, A.W., Falchi, M., Arslan, M., Froguel, P., 2015. Genetic variants in LEP, LEPR, and MC4R explain 30% of severe obesity in children from a consanguineous population. Obesity (Silver Spring) 23, 1687-1695.
    [24]
    Saeed, S., Butt, T.A., Anwer, M., Arslan, M., Froguel, P., 2012. High prevalence of leptin and melanocortin-4 receptor gene mutations in children with severe obesity from Pakistani consanguineous families. Mol. Genet. Metab. 106, 121-126.
    [25]
    Sahu, A., 2002. Resistance to the satiety action of leptin following chronic central leptin infusion is associated with the development of leptin resistance in neuropeptide Y neurones. J. Neuroendocrinol. 14, 796-804.
    [26]
    Serra-Juhe, C., Martos-Moreno, G., Bou de Pieri, F., Flores, R., Gonzalez, J.R., Rodriguez-Santiago, B., Argente, J., Perez-Jurado, L.A., 2017. Novel genes involved in severe early-onset obesity revealed by rare copy number and sequence variants. PLoS Genet. 13, e1006657.
    [27]
    Shabana, Hasnain, S., 2016. The p. N103K mutation of leptin (LEP) gene and severe early onset obesity in Pakistan. Biol. Res. 49, 23.
    [28]
    Shiota, A., Shimabukuro, M., Fukuda, D., Soeki, T., Sato, H., Uematsu, E., Hirata, Y., Kurobe, H., Maeda, N., Sakaue, H., Masuzaki, H., Shimomura, I., Sata, M., 2012. Telmisartan ameliorates insulin sensitivity by activating the AMPK/SIRT1 pathway in skeletal muscle of obese db/db mice. Cardiovasc. Diabetol. 11, 139.
    [29]
    Song, C.Q., Wang, D., Jiang, T., O’Connor, K., Tang, Q., Cai, L., Li, X., Weng, Z., Yin, H., Gao, G., Mueller, C., Flotte, T.R., Xue, W., 2018. In Vivo Genome Editing Partially Restores Alpha1-Antitrypsin in a Murine Model of AAT Deficiency. Hum. Gene Ther. 29, 853-860.
    [30]
    Srivastava, M., Nambiar, M., Sharma, S., Karki, S.S., Goldsmith, G., Hegde, M., Kumar, S., Pandey, M., Singh, R.K., Ray, P., Natarajan, R., Kelkar, M., De, A., Choudhary, B., Raghavan, S.C., 2012. An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell 151, 1474-1487.
    [31]
    Stephens, C.J., Lauron, E.J., Kashentseva, E., Lu, Z.H., Yokoyama, W.M., Curiel, D.T., 2019. Long-term correction of hemophilia B using adenoviral delivery of CRISPR/Cas9. J. Control. Release 298, 128-141.
    [32]
    Wagoner, B., Hausman, D.B., Harris, R.B., 2006. Direct and indirect effects of leptin on preadipocyte proliferation and differentiation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1557-1564.
    [33]
    Wu, L., Liu, W., Bayaer, N., Gu, W., Song, J., 2014. Exogenous leptin administered intramuscularly induces sex hormone disorder and Ca loss via downregulation of Gnrh and PI3K expression. Exp. Anim. 63, 447-457.
    [34]
    Zhang, L., Ward, J.D., Cheng, Z., Dernburg, A.F., 2015. The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans. Development 142, 4374-4384.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (157) PDF downloads (10) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return