5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 1
Jan.  2021
Turn off MathJax
Article Contents

Mitotic inheritance of DNA methylation: more than just copy and paste

doi: 10.1016/j.jgg.2021.01.006
More Information
  • Decades of investigation on DNA methylation have led to deeper insights into its metabolic mechanisms and biological functions. This understanding was fueled by the recent development of genome editing tools and our improved capacity for analyzing the global DNA methylome in mammalian cells. This review focuses on the maintenance of DNA methylation patterns during mitotic cell division. We discuss the latest discoveries of the mechanisms for the inheritance of DNA methylation as a stable epigenetic memory. We also highlight recent evidence showing the rapid turnover of DNA methylation as a dynamic gene regulatory mechanism. A body of work has shown that altered DNA methylomes are common features in aging and disease. We discuss the potential links between methylation maintenance mechanisms and disease-associated methylation changes.
  • loading
  • [1]
    Adam, S., Anteneh, H., Hornisch, M., Wagner, V., Lu, J.W., Radde, N.E., Bashtrykov, P., Song, J.K., and Jeltsch, A., 2020. DNA sequence-dependent activity and base flipping mechanisms of DNMT1 regulate genome-wide DNA methylation. Nat. Commun. 11, 3723.
    [2]
    Alexander, K.A., Wang, X., Shibata, M., Clark, A.G., and Garcia-Garcia, M.J., 2015. TRIM28 controls genomic imprinting through distinct mechanisms during and after early genome-wide reprogramming. Cell Rep. 13, 1194-1205.
    [3]
    Alisch, R.S., Barwick, B.G., Chopra, P., Myrick, L.K., Satten, G.A., Conneely, K.N., and Warren, S.T., 2012. Age-associated DNA methylation in pediatric populations. Genome Res. 22, 623-632.
    [4]
    Arand, J., Wossidlo, M., Lepikhov, K., Peat, J.R., Reik, W., and Walter, J., 2015. Selective impairment of methylation maintenance is the major cause of DNA methylation reprogramming in the early embryo. Epigenetics Chromatin 8, 1.
    [5]
    Argelaguet, R., Clark, S.J., Mohammed, H., Stapel, L.C., Krueger, C., Kapourani, C.A., Imaz-Rosshandler, I., Lohoff, T., Xiang, Y., Hanna, C.W., Smallwood, S., Ibarra-Soria, X., Buettner, F., Sanguinetti, G., Xie, W., Krueger, F., Gottgens, B., Rugg-Gunn, P.J., Kelsey, G., Dean, W., Nichols, J., Stegle, O., Marioni, J.C., and Reik, W., 2019. Multi-omics profiling of mouse gastrulation at single-Cell Res.olution. Nature 576, 487-491.
    [6]
    Barau, J., Teissandier, A., Zamudio, N., Roy, S., Nalesso, V., Herault, Y., Guillou, F., and Bourc’his, D., 2016. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science 354, 909-912.
    [7]
    Bashtrykov, P., Jankevicius, G., Jurkowska, R.Z., Ragozin, S., and Jeltsch, A., 2014. The UHRF1 protein stimulates the activity and specificity of the maintenance DNA methyltransferase DNMT1 by an allosteric mechanism. J. Biol. Chem. 289, 4106-4115.
    [8]
    Bashtrykov, P., Jankevicius, G., Smarandache, A., Jurkowska, R.Z., Ragozin, S., and Jeltsch, A., 2012. Specificity of Dnmt1 for methylation of hemimethylated CpG Sites resides in its catalytic domain. Chem. Biol. 19, 572-578.
    [9]
    Bell, C.G., Lowe, R., Adams, P.D., Baccarelli, A.A., Beck, S., Bell, J.T., Christensen, B.C., Gladyshev, V.N., Heijmans, B.T., Horvath, S., Ideker, T., Issa, J.P.J., Kelsey, K.T., Marioni, R.E., Reik, W., Relton, C.L., Schalkwyk, L.C., Teschendorff, A.E., Wagner, W., Zhang, K., and Rakyan, V.K., 2019. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20, 249.
    [10]
    Bender, C.M., Pao, M.M., and Jones, P.A., 1998. Inhibition of DNA methylation by 5-Aza-2’-deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res. 58, 95-101.
    [11]
    Berger, S.L., and Sassone-Corsi, P., 2016. Metabolic signaling to chromatin. Cold Spring Harb. Perspect. Biol. 8, a019463.
    [12]
    Berkyurek, A.C., Suetake, I., Arita, K., Takeshita, K., Nakagawa, A., Shirakawa, M., and Tajima, S., 2014. The DNA methyltransferase Dnmt1 directly interacts with the SET and RING finger-associated (SRA) domain of the multifunctional protein Uhrf1 to facilitate accession of the catalytic center to hemi-methylated DNA. J. Biol. Chem. 289, 379-386.
    [13]
    Bestor, T., Laudano, A., Mattaliano, R., and Ingram, V., 1988. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells: the carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J. Mol. Biol. 203, 971-983.
    [14]
    Bestor, T.H., and Ingram, V.M., 1983. Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc. Natl. Acad. Sci. U. S. A. 80, 5559-5563.
    [15]
    Bewick, A.J., Hofmeister, B.T., Powers, R.A., Mondo, S.J., Grigoriev, I.V., James, T.Y., Stajich, J.E., and Schmitz, R.J., 2019. Diversity of cytosine methylation across the fungal tree of life. Nat. Ecol. Evol. 3, 479-490.
    [16]
    Bewick, A.J., Vogel, K.J., Moore, A.J., and Schmitz, R.J., 2017. Evolution of DNA methylation across insects. Mol. Biol. Evol. 34, 654-665.
    [17]
    Bortvin, A., Goodheart, M., Liao, M., and Page, D.C., 2004. Dppa3 / Pgc7 / stella is a maternal factor and is not required for germ cell specification in mice. BMC Dev. Biol. 4, 2.
    [18]
    Bostick, M., Kim, J.K., Esteve, P.O., Clark, A., Pradhan, S., and Jacobsen, S.E., 2007. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760-1764.
    [19]
    Busto-Moner, L., Morival, J., Ren, H.L., Fahim, A., Reitz, Z., Downing, T.L., and Read, E.L., 2020. Stochastic modeling reveals kinetic heterogeneity in post-replication DNA methylation. PLoS Comp. Biol. 16, e1007195.
    [20]
    Casillas, M.A., Lopatina, N., Andrews, L.G., and Tollefsbol, T.O., 2003. Transcriptional control of the DNA methyltransferases is altered in aging and neoplastically-transformed human fibroblasts. Mol. Cell. Biochem. 252, 33-43.
    [21]
    Catania, S., Dumesic, P.A., Pimentel, H., Nasif, A., Stoddard, C.I., Burke, J.E., Diedrich, J.K., Cooke, S., Shea, T., Gienger, E., Lintner, R., Yates, J.R., Hajkova, P., Narlikar, G.J., Cuomo, C.A., Pritchard, J.K., and Madhani, H.D., 2020. Evolutionary persistence of DNA methylation for millions of years after ancient loss of a de novo methyltransferase. Cell 180, 263-277.e20.
    [22]
    Charlton, J., Downing, T.L., Smith, Z.D., Gu, H., Clement, K., Pop, R., Akopian, V., Klages, S., Santos, D.P., Tsankov, A.M., Timmermann, B., Ziller, M.J., Kiskinis, E., Gnirke, A., and Meissner, A., 2018. Global delay in nascent strand DNA methylation. Nat. Struct. Mol. Biol. 25, 327-332.
    [23]
    Charlton, J., Jung, E.J., Mattei, A.L., Bailly, N., Liao, J., Martin, E.J., Giesselmann, P., Brandl, B., Stamenova, E.K., Muller, F.-J., Kiskinis, E., Gnirke, A., Smith, Z.D., and Meissner, A., 2020. TETs compete with DNMT3 activity in pluripotent cells at thousands of methylated somatic enhancers. Nat. Genet. 52, 819-827.
    [24]
    Chen, T., Ueda, Y., Dodge, J.E., Wang, Z., and Li, E., 2003. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol. Cell. Biol. 23, 5594-5605.
    [25]
    Chen, Z., and Zhang, Y., 2020. Role of mammalian DNA methyltransferases in development. Annu. Rev. Biochem. 89, 135-158.
    [26]
    Choi, M., Genereux, D.P., Goodson, J., Al-Azzawi, H., Allain, S.Q., Simon, N., Palasek, S., Ware, C.B., Cavanaugh, C., Miller, D.G., Johnson, W.C., Sinclair, K.D., Stoger, R., and Laird, C.D., 2017. Epigenetic memory via concordant DNA methylation is inversely correlated to developmental potential of mammalian cells. PLoS Genet. 13, e1007060.
    [27]
    Chuang, L.S.-H., Ian, H.-I., Koh, T.-W., Ng, H.-H., Xu, G., and Li, B.F., 1997. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277, 1996-2000.
    [28]
    D’Anna, F., Van Dyck, L., Xiong, J.Y., Zhao, H., Berrens, R.V., Qian, J.B., Bieniasz-Krzywiec, P., Chandra, V., Schoonjans, L., Matthews, J., De Smedt, J., Minnoye, L., Amorim, R., Khorasanizadeh, S., Yu, Q., Zhao, L.Y., De Borre, M., Savvides, S.N., Simon, M.C., Carmeliet, P., Reik, W., Rastinejad, F., Mazzone, M., Thienpont, B., and Lambrechts, D., 2020. DNA methylation repels binding of hypoxia-inducible transcription factors to maintain tumor immunotolerance. Genome Biol. 21, 182.
    [29]
    Cruickshanks, H.A., McBryan, T., Nelson, D.M., VanderKraats, N.D., Shah, P.P., van Tuyn, J., Rai, T.S., Brock, C., Donahue, G., Dunican, D.S., Drotar, M.E., Meehan, R.R., Edwards, J.R., Berger, S.L., and Adams, P.D., 2013. Senescent cells harbour features of the cancer epigenome. Nat. Cell Biol. 15, 1495-1506.
    [30]
    Dahlet, T., Argueso Lleida, A., Al Adhami, H., Dumas, M., Bender, A., Ngondo, R.P., Tanguy, M., Vallet, J., Auclair, G., Bardet, A.F., and Weber, M., 2020. Genome-wide analysis in the mouse embryo reveals the importance of DNA methylation for transcription integrity. Nat. Commun. 11, 3153.
    [31]
    Dai, H.-Q., Wang, B.-A., Yang, L., Chen, J.-J., Zhu, G.-C., Sun, M.-L., Ge, H., Wang, R., Chapman, D.L., Tang, F., Sun, X., and Xu, G.-L., 2016. TET-mediated DNA demethylation controls gastrulation by regulating Lefty-Nodal signalling. Nature 538, 528-532.
    [32]
    Dan, J.M., Rousseau, P., Hardikar, S., Veland, N., Wong, J.M., Autexier, C., and Chen, T.P., 2017. Zscan4 inhibits maintenance DNA methylation to facilitate telomere elongation in mouse embryonic stem cells. Cell Rep. 20, 1936-1949.
    [33]
    DaRosa, P.A., Harrison, J.S., Zelter, A., Davis, T.N., Brzovic, P., Kuhlman, B., and Klevit, R.E., 2018. A bifunctional role for the UHRF1 UBL domain in the control of hemi-methylated DNA-dependent histone ubiquitylation. Mol. Cell 72, 753-765.e6.
    [34]
    Dennis, K., Fan, T., Geiman, T., Yan, Q.S., and Muegge, K., 2001. Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev. 15, 2940-2944.
    [35]
    Domcke, S., Bardet, A.F., Ginno, P.A., Hartl, D., Burger, L., and Schubeler, D., 2015. Competition between DNA methylation and transcription factors determines binding of NRF1. Nature 528, 575-579.
    [36]
    Du, W., Dong, Q., Zhang, Z., Liu, B., Zhou, T., Xu, R.-m., Wang, H., Zhu, B., and Li, Y., 2019. Stella protein facilitates DNA demethylation by disrupting the chromatin association of the RING finger-type E3 ubiquitin ligase UHRF1. J. Biol. Chem. 294, 8907-8917.
    [37]
    Easwaran, H.P., Schermelleh, L., Leonhardt, H., and Cardoso, M.C., 2004. Replication-independent chromatin loading of Dnmt1 during G2 and M phases. EMBO Rep. 5, 1181-1186.
    [38]
    Egger, G., Jeong, S., Escobar, S.G., Cortez, C.C., Li, T.W.H., Saito, Y., Yoo, C.B., Jones, P.A., and Liang, G.N., 2006. Identification of DNMT1 (DNA methyltransferase 1) hypomorphs in somatic knockouts suggests an essential role for DNMT1 in cell survival. Proc. Natl. Acad. Sci. U. S. A. 103, 14080-14085.
    [39]
    Fang, J., Cheng, J.D., Wang, J.L., Zhang, Q., Liu, M.J., Gong, R., Wang, P., Zhang, X.D., Feng, Y.Y., Lan, W.X., Gong, Z., Tang, C., Wong, J.M., Yang, H.R., Cao, C.Y., and Xu, Y.H., 2016. Hemi-methylated DNA opens a closed conformation of UHRF1 to facilitate its histone recognition. Nat. Commun. 7, 11197.
    [40]
    Feldmann, A., Ivanek, R., Murr, R., Gaidatzis, D., Burger, L., and Schubeler, D., 2013. Transcription factor occupancy can mediate active turnover of DNA methylation at regulatory regions. PLoS Genet. 9, e1003994.
    [41]
    Felle, M., Hoffmeister, H., Rothammer, J., Fuchs, A., Exler, J.H., and Langst, G., 2011. Nucleosomes protect DNA from DNA methylation in vivo and in vitro. Nucleic Acids Res. 39, 6956-6969.
    [42]
    Feng, J., Zhou, Y., Campbell, S.L., Le, T., Li, E., Sweatt, J.D., Silva, A.J., and Fan, G.P., 2010a. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci. 13, 423-430.
    [43]
    Feng, S.H., Cokus, S.J., Zhang, X.Y., Chen, P.Y., Bostick, M., Goll, M.G., Hetzel, J., Jain, J., Strauss, S.H., Halpern, M.E., Ukomadu, C., Sadler, K.C., Pradhan, S., Pellegrini, M., and Jacobsen, S.E., 2010b. Conservation and divergence of methylation patterning in plants and animals. Proc. Natl. Acad. Sci. U. S. A. 107, 8689-8694.
    [44]
    Ferry, L., Fournier, A., Tsusaka, T., Adelmant, G., Shimazu, T., Matano, S., Kirsh, O., Amouroux, R., Dohmae, N., Suzuki, T., Filion, G.J., Deng, W., de Dieuleveult, M., Fritsch, L., Kudithipudi, S., Jeltsch, A., Leonhardt, H., Hajkova, P., Marto, J.A., Arita, K., Shinkai, Y., and Defossez, P.-A., 2017. Methylation of DNA Ligase 1 by G9a/GLP Recruits UHRF1 to Replicating DNA and Regulates DNA Methylation. Mol. Cell 67, 550-565.e5.
    [45]
    Field, A.E., Robertson, N.A., Wang, T., Havas, A., Ideker, T., and Adams, P.D., 2018. DNA Methylation Clocks in Aging: Categories, Causes, and Consequences. Mol. Cell 71, 882-895.
    [46]
    Foster, B.M., Stolz, P., Mulholland, C.B., Montoya, A., Kramer, H., Bultmann, S., and Bartke, T., 2018. Critical Role of the UBL Domain in Stimulating the E3 Ubiquitin Ligase Activity of UHRF1 toward Chromatin. Mol. Cell 72, 739-752.e9.
    [47]
    Gao, L.F., Emperle, M., Guo, Y.R., Grimm, S.A., Ren, W.D., Adam, S., Uryu, H., Zhang, Z.M., Chen, D.L., Yin, J.K., Dukatz, M., Anteneh, H., Jurkowska, R.Z., Lu, J.W., Wang, Y.S., Bashtrykov, P., Wade, P.A., Wang, G.G., Jeltsch, A., and Song, J.K., 2020. Comprehensive structure-function characterization of DNMT3B and DNMT3A reveals distinctive de novo DNA methylation mechanisms. Nat. Commun. 11, 3355.
    [48]
    Gaston, K., and Fried, M., 1995. CpG methylation has differential effects on the binding of YY1 and ETS proteins to the bi-directional promoter of the Surf-1 and Surf-2 genes. Nucleic Acids Res. 23, 901-909.
    [49]
    Gelato, K.A., Tauber, M., Ong, M.S., Winter, S., Hiragami-Hamada, K., Sindlinger, J., Lemak, A., Bultsma, Y., Houliston, S., Schwarzer, D., Divecha, N., Arrowsmith, C.H., and Fischle, W., 2014. Accessibility of different histone H3-binding domains of UHRF1 is allosterically regulated by phosphatidylinositol 5-Phosphate. Mol. Cell 54, 905-919.
    [50]
    Ginno, P.A., Gaidatzis, D., Feldmann, A., Hoerner, L., Imanci, D., Burger, L., Zilbermann, F., Peters, A.H.F.M., Edenhofer, F., Smallwood, S.A., Krebs, A.R., and Schubeler, D., 2020. A genome-scale map of DNA methylation turnover identifies site-specific dependencies of DNMT and TET activity. Nat. Commun. 11, 2680.
    [51]
    Gonzalez-Magana, A., de Opakua, A.I., Merino, N., Monteiro, H., Diercks, T., Murciano-Calles, J., Luque, I., Bernado, P., Cordeiro, T.N., Biasio, A.D., and Blanco, F.J., 2019. Double monoubiquitination modifies the molecular recognition properties of p15PAF promoting binding to the reader module of dnmt1. ACS Chem. Biol. 14, 2315-2326.
    [52]
    Gowher, H., and Jeltsch, A., 2018. Mammalian DNA methyltransferases: new discoveries and open questions. Biochem. Soc. Trans. 46, 1191-1202.
    [53]
    Goyal, R., Reinhardt, R., and Jeltsch, A., 2006. Accuracy of DNA methylation pattern preservation by the Dnmt1 methyltransferase. Nucleic Acids Res. 34, 1182-1188.
    [54]
    Graf, U., Casanova, E.A., Wyck, S., Dalcher, D., Gatti, M., Vollenweider, E., Okoniewski, M.J., Weber, F.A., Patel, S.S., Schmid, M.W., Li, J., Sharif, J., Wanner, G.A., Koseki, H., Wong, J., Pelczar, P., Penengo, L., Santoro, R., and Cinelli, P., 2017. Pramel7 mediates ground-state pluripotency through proteasomal-epigenetic combined pathways. Nat. Cell Biol. 19, 763-773.
    [55]
    Greenberg, M.V.C., and Bourc’his, D., 2019. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol. Cell. Biol. 20, 590-607.
    [56]
    Guo, S., Diep, D., Plongthongkum, N., Fung, H.L., Zhang, K., and Zhang, K., 2017. Identification of methylation haplotype blocks aids in deconvolution of heterogeneous tissue samples and tumor tissue-of-origin mapping from plasma DNA. Nat. Genet. 49, 635-642.
    [57]
    Guo, F., Li, X.L., Liang, D., Li, T., Zhu, P., Guo, H.S., Wu, X.L., Wen, L., Gu, T.P., Hu, B.Q., Walsh, C.P., Li, J.S., Tang, F.C., and Xu, G.L., 2014. Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell 15, 447-458.
    [58]
    Han, M., Li, J., Cao, Y., Huang, Y., Li, W., Zhu, H., Zhao, Q., Han, J.-D.J., Wu, Q., Li, J., Feng, J., and Wong, J., 2020. A role for LSH in facilitating DNA methylation by DNMT1 through enhancing UHRF1 chromatin association. Nucleic Acids Res. 48, 12116-12134.
    [59]
    Harrison, J.S., Cornett, E.M., Goldfarb, D., DaRosa, P.A., Li, Z.M., Yan, F., Dickson, B.M., Guo, A.H., Cantu, D.V., Kaustov, L., Brown, P.J., Arrowsmith, C.H., Erie, D.A., Major, M.B., Klevit, R.E., Krajewski, K., Kuhlman, B., Strahl, B.D., and Rothbart, S.B., 2016. Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1. eLife 5, e17101.
    [60]
    Hashimoto, H., Liu, Y.W., Upadhyay, A.K., Chang, Y.Q., Howerton, S.B., Vertino, P.M., Zhang, X., and Cheng, X.D., 2012. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res. 40, 4841-4849.
    [61]
    He, Y.P., Gorkin, D.U., Dickel, D.E., Nery, J.R., Castanon, R.G., Lee, A.Y., Shen, Y., Visel, A., Pennacchio, L.A., Ren, B., and Ecker, J.R., 2017. Improved regulatory element prediction based on tissue-specific local epigenomic signatures. Proc. Natl. Acad. Sci. U. S. A. 114, E1633-E1640.
    [62]
    He, Y.P., Hariharan, M., Gorkin, D.U., Dickel, D.E., Luo, C.Y., Castanon, R.G., Nery, J.R., Lee, A.Y., Zhao, Y., Huang, H., Williams, B.A., Trout, D., Amrhein, H., Fang, R.X., Chen, H.M., Li, B., Visel, A., Pennacchio, L.A., Ren, B., and Ecker, J.R., 2020. Spatiotemporal DNA methylome dynamics of the developing mouse fetus. Nature 583, 752-759.
    [63]
    Hill, P.W.S., Leitch, H.G., Requena, C.E., Sun, Z.Y., Amouroux, R., Roman-Trufero, M., Borkowska, M., Terragni, J., Vaisvila, R., Linnett, S., Bagci, H., Dharmalingham, G., Haberle, V., Lenhard, B., Zheng, Y., Pradhan, S., and Hajkova, P., 2018. Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte. Nature 555, 392-396.
    [64]
    Hirasawa, R., Chiba, H., Kaneda, M., Tajima, S., Li, E., Jaenisch, R., and Sasaki, H., 2008. Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes Dev. 22, 1607-1616.
    [65]
    Holliday, R., and Pugh, J.E., 1975. DNA modification mechanisms and gene activity during development. Science 187, 226-232.
    [66]
    Hon, G.C., Rajagopal, N., Shen, Y., McCleary, D.F., Yue, F., Dang, M.D., and Ren, B., 2013. Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat. Genet. 45, 1198-1206.
    [67]
    Hon, G.C., Song, C.X., Du, T.T., Jin, F.L., Selvaraj, S., Lee, A.Y., Yen, C.A., Ye, Z., Mao, S.Q., Wang, B.A., Kuan, S., Edsall, L.E., Zhao, B.S., Xu, G.L., He, C., and Ren, B., 2014. 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol. Cell 56, 286-297.
    [68]
    Horvath, S., and Raj, K., 2018. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371-384.
    [69]
    Huff, J.T., and Zilberman, D., 2014. Dnmt1-Independent CG methylation contributes to nucleosome positioning in diverse eukaryotes. Cell 156, 1286-1297.
    [70]
    Ishiyama, S., Nishiyama, A., Saeki, Y., Moritsugu, K., Morimoto, D., Yamaguchi, L., Arai, N., Matsumura, R., Kawakami, T., and Mishima, Y., 2017. Structure of the dnmt1 reader module complexed with a unique two-mono-ubiquitin mark on histone H3 reveals the basis for DNA methylation maintenance. Mol. Cell 68, 350-360. e7.
    [71]
    Jeltsch, A., and Jurkowska, R.Z., 2014. New concepts in DNA methylation. Trends Biochem. Sci. 39, 310-318.
    [72]
    Jeong, M., Sun, D.Q., Luo, M., Huang, Y., Challen, G.A., Rodriguez, B., Zhang, X.T., Chavez, L., Wang, H., Hannah, R., Kim, S.B., Yang, L.B., Ko, M., Chen, R., Gottgens, B., Lee, J.S., Gunaratne, P., Godley, L.A., Darlington, G.J., Rao, A., Li, W., and Goodell, M.A., 2014. Large conserved domains of low DNA methylation maintained by Dnmt3a. Nat. Genet. 46, 17-23.
    [73]
    Jia, Y.H., Li, P.S., Fang, L., Zhu, H.J., Xu, L.L., Cheng, H., Zhang, J.Y., Li, F., Feng, Y., Li, Y., Li, J.L., Wang, R.P., Du, J.X., Li, J.W., Chen, T.P., Ji, H.B., Han, J., Yu, W.Q., Wu, Q.H., and Wong, J.M., 2016. Negative regulation of DNMT3A de novo DNA methylation by frequently overexpressed UHRF family proteins as a mechanism for widespread DNA hypomethylation in cancer. Cell Discov. 2, 16007.
    [74]
    Jones, P.A., and Liang, G.N., 2009. Rethinking how DNA methylation patterns are maintained. Nat. Rev. Genet. 10, 805-811.
    [75]
    Kagiwada, S., Kurimoto, K., Hirota, T., Yamaji, M., and Saitou, M., 2013. Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. EMBO J. 32, 340-353.
    [76]
    Karg, E., Smets, M., Ryan, J., Forne, I., Qin, W.H., Mulholland, C.B., Kalideris, G., Imhof, A., Bultmann, S., and Leonhardt, H., 2017. Ubiquitome analysis reveals PCNA-associated factor 15 (PAF15) as a specific ubiquitination target of UHRF1 in embryonic stem cells. J. Mol. Biol. 429, 3814-3824.
    [77]
    Klutstein, M., Nejman, D., Greenfield, R., and Cedar, H., 2016. DNA methylation in cancer and aging. Cancer Res. 76, 3446-3450.
    [78]
    Kori, S., Ferry, L., Matano, S., Jimenji, T., Kodera, N., Tsusaka, T., Matsumura, R., Oda, T., Sato, M., Dohmae, N., Ando, T., Shinkai, Y., Defossez, P.A., and Arita, K., 2019. Structure of the UHRF1 tandem tudor domain bound to a methylated non-histone protein, LIG1, reveals rules for binding and regulation. Structure 27, 485-496.
    [79]
    Kriaucionis, S., and Heintz, N., 2009. The nuclear DNA base 5-Hydroxymethylcytosine is present in purkinje neurons and the brain. Science 324, 929-930.
    [80]
    Lee, H.J., Hore, T.A., and Reik, W., 2014. Reprogramming the methylome: Erasing memory and creating diversity. Cell Stem Cell 14, 710-719.
    [81]
    Li, J.L., Wang, R.P., Jin, J.Y., Han, M.M., Chen, Z.S., Gao, Y.Y., Hu, X.L., Zhu, H.J., Gao, H.F., Lu, K.B., Shao, Y.J., Lyu, C., Lai, W.Y., Li, P.S., Hu, G., Li, J.W., Li, D.L., Wang, H.L., Wu, Q.H., and Wong, J.M., 2020. USP7 negatively controls global DNA methylation by attenuating ubiquitinated histone-dependent DNMT1 recruitment. Cell Discov. 6, 58.
    [82]
    Li, E., and Zhang, Y., 2014. DNA methylation in mammals. Cold Spring Harb. Perspect. Biol. 6, a019133.
    [83]
    Li, T., Wang, L.S., Du, Y.M., Xie, S., Yang, X., Lian, F.M., Zhou, Z.J., and Qian, C.M., 2018a. Structural and mechanistic insights into UHRF1-mediated DNMT1 activation in the maintenance DNA methylation. Nucleic Acids Res. 46, 3218-3231.
    [84]
    Li, X.J., Ito, M., Zhou, F., Youngson, N., Zuo, X.P., Leder, P., and Ferguson-Smith, A.C., 2008. A Maternal-Zygotic Effect Gene, Zfp57, Maintains both maternal and paternal imprints. Dev Cell. 15, 547-557.
    [85]
    Li, Y.F., Zhang, Z.Q., Chen, J.Y., Liu, W.Q., Lai, W.Y., Liu, B.D., Li, X., Liu, L.P., Xu, S.H., Dong, Q., Wang, M.Z., Duan, X.Y., Tan, J.J., Zheng, Y., Zhang, P.M., Fan, G.P., Wong, J.M., Xu, G.L., Wang, Z.G., Wang, H.L., Gao, S.R., and Zhu, B., 2018b. Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1. Nature 564, 136-140.
    [86]
    Liang, G., Chan, M.F., Tomigahara, Y., Tsai, Y.C., Gonzales, F.A., Li, E., Laird, P.W., and Jones, P.A., 2002. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol. Cell. Biol. 22, 480-491.
    [87]
    Liao, J., Karnik, R., Gu, H.C., Ziller, M.J., Clement, K., Tsankov, A.M., Akopian, V., Gifford, C.A., Donaghey, J., Galonska, C., Pop, R., Reyon, D., Tsai, S.Q., Mallard, W., Joung, J.K., Rinn, J.L., Gnirke, A., and Meissner, A., 2015. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat. Genet. 47, 469-478.
    [88]
    Liu, Y.W., Toh, H., Sasaki, H., Zhang, X., and Cheng, X.D., 2012. An atomic model of Zfp57 recognition of CpG methylation within a specific DNA sequence. Genes Dev. 26, 2374-2379.
    [89]
    Lopez-Moyado, I.F., Tsagaratou, A., Yuita, H., Seo, H., Delatte, B., Heinz, S., Benner, C., and Rao, A., 2019. Paradoxical association of TET loss of function with genome-wide DNA hypomethylation. Proc. Natl. Acad. Sci. U. S. A. 116, 16933-16942.
    [90]
    Lu, F.L., Liu, Y.T., Jiang, L., Yamaguchi, S., and Zhang, Y., 2014. Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev. 28, 2103-2119.
    [91]
    Lyons, D.B., and Zilberman, D., 2017. DDM1 and Lsh remodelers allow methylation of DNA wrapped in nucleosomes. Elife 6, e30674.
    [92]
    Macfarlan, T.S., Gifford, W.D., Driscoll, S., Lettieri, K., Rowe, H.M., Bonanomi, D., Firth, A., Singer, O., Trono, D., and Pfaff, S.L., 2012. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57-63.
    [93]
    Maenohara, S., Unoki, M., Toh, H., Ohishi, H., Sharif, J., Koseki, H., and Sasaki, H., 2017. Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos. PLoS Genet. 13, e1007042.
    [94]
    Manzo, M., Wirz, J., Ambrosi, C., Villasenor, R., Roschitzki, B., and Baubec, T., 2017. Isoform-specific localization of DNMT3A regulates DNA methylation fidelity at bivalent CpG islands. EMBO J. 36, 3421-3434.
    [95]
    Mao, S.Q., Cuesta, S.M., Tannahill, D., and Balasubramanian, S., 2020. Genome-wide DNA methylation signatures are determined by DNMT3A/B sequence preferences. Biochemistry 59, 2541-2550.
    [96]
    Martino, D., Loke, Y.J., Gordon, L., Ollikainen, M., Cruickshank, M.N., Saffery, R., and Craig, J.M., 2013. Longitudinal, genome-scale analysis of DNA methylation in twins from birth to 18 months of age reveals rapid epigenetic change in early life and pair-specific effects of discordance. Genome Biol. 14, R42.
    [97]
    Mayran, A., Khetchoumian, K., Hariri, F., Pastinen, T., Gauthier, Y., Balsalobre, A., and Drouin, J., 2018. Pioneer factor Pax7 deploys a stable enhancer repertoire for specification of cell fate. Nat. Genet. 50, 259-269.
    [98]
    Meir, Z., Mukamel, Z., Chomsky, E., Lifshitz, A., and Tanay, A., 2020. Single-cell analysis of clonal maintenance of transcriptional and epigenetic states in cancer cells. Nat. Genet. 52, 709-718.
    [99]
    Messerschmidt, D.M., de Vries, W., Ito, M., Solter, D., Ferguson-Smith, A., and Knowles, B.B., 2012. Trim28 is required for epigenetic stability during mouse oocyte to embryo transition. Science 335, 1499-1502.
    [100]
    Ming, X., Zhang, Z., Zou, Z., Lv, C., Dong, Q., He, Q., Yi, Y., Li, Y., Wang, H., and Zhu, B., 2020. Kinetics and mechanisms of mitotic inheritance of DNA methylation and their roles in aging-associated methylome deterioration. Cell Res. 30, 980-996.
    [101]
    Mishima, Y., Brueckner, L., Takahashi, S., Kawakami, T., Otani, J., Shinohara, A., Takeshita, K., Garvilles, R.G., Watanabe, M., Sakai, N., Takeshima, H., Nachtegael, C., Nishiyama, A., Nakanishi, M., Arita, K., Nakashima, K., Hojo, H., and Suetake, I., 2019. Enhanced processivity of Dnmt1 by monoubiquitinated histone H3. Genes Cells 25, 22-32.
    [102]
    Mulholland, C.B., Nishiyama, A., Ryan, J., Nakamura, R., Yigit, M., Gluck, I.M., Trummer, C., Qin, W.H., Bartoschek, M.D., Traube, F.R., Parsa, E., Ugur, E., Modic, M., Acharya, A., Stolz, P., Ziegenhain, C., Wierer, M., Enard, W., Carell, T., Lamb, D.C., Takeda, H., Nakanishi, M., Bultmann, S., and Leonhardt, H., 2020. Recent evolution of a TET-controlled and DPPA3/STELLA-driven pathway of passive DNA demethylation in mammals. Nat. Commun. 11, 5972.
    [103]
    Nakamura, T., Arai, Y., Umehara, H., Masuhara, M., Kimura, T., Taniguchi, H., Sekimoto, T., Ikawa, M., Yoneda, Y., Okabe, M., Tanaka, S., Shiota, K., and Nakano, T., 2007. PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat. Cell Biol. 9, 64-71.
    [104]
    Nishiyama, A., Mulholland, C.B., Bultmann, S., Kori, S., Endo, A., Saeki, Y., Qin, W.H., Trummer, C., Chiba, Y., Yokoyama, H., Kumamoto, S., Kawakami, T., Hojo, H., Nagae, G., Aburatani, H., Tanaka, K., Arita, K., Leonhardt, H., and Nakanishi, M., 2020. Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation. Nat. Commun. 11, 1222.
    [105]
    Nishiyama, A., Yamaguchi, L., Sharif, J., Johmura, Y., Kawamura, T., Nakanishi, K., Shimamura, S., Arita, K., Kodama, T., Ishikawa, F., Koseki, H., and Nakanishi, M., 2013. Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication. Nature 502, 249-253.
    [106]
    Ohno, R., Nakayama, M., Naruse, C., Okashita, N., Takano, O., Tachibana, M., Asano, M., Saitou, M., and Seki, Y., 2013. A replication-dependent passive mechanism modulates DNA demethylation in mouse primordial germ cells. Development 140, 2892-2903.
    [107]
    Okano, M., Bell, D.W., Haber, D.A., and Li, E., 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247-257.
    [108]
    Okano, M., Xie, S., and Li, E., 1998. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet. 19, 219-220.
    [109]
    Okuwaki, M., and Verreault, A., 2004. Maintenance DNA methylation of nucleosome core particles. J. Biol. Chem. 279, 2904-2912.
    [110]
    Payer, B., Saitou, M., Barton, S.C., Thresher, R., Dixon, J.P.C., Zahn, D., Colledge, W.H., Carlton, M.B.L., Nakano, T., and Surani, M.A., 2003. Stella is a maternal effect gene required for normal early development in mice. Curr. Biol. 13, 2110-2117.
    [111]
    Pradhan, S., Bacolla, A., Wells, R.D., and Roberts, R.J., 1999. Recombinant human DNA (cytosine-5) methyltransferase I. Expression, purification, and comparison of de novo and maintenance methylation. J. Biol. Chem. 274, 33002-33010.
    [112]
    Qin, W.H., Wolf, P., Liu, N., Link, S., Smets, M., La Mastra, F., Forne, I., Pichler, G., Horl, D., Fellinger, K., Spada, F., Bonapace, I.M., Imhof, A., Harz, H., and Leonhardt, H., 2015. DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination. Cell Res. 25, 911-929.
    [113]
    Quenneville, S., Verde, G., Corsinotti, A., Kapopoulou, A., Jakobsson, J., Offner, S., Baglivo, I., Pedone, P.V., Grimaldi, G., Riccio, A., and Trono, D., 2011. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol. Cell 44, 361-372.
    [114]
    Ramachandran, S., and Henikoff, S., 2016. Transcriptional regulators compete with nucleosomes post-replication. Cell 165, 580-592.
    [115]
    Rasmussen, K.D., and Helin, K., 2016. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 30, 733-750.
    [116]
    Ren, W.D., Fan, H.T., Grimm, S.A., Guo, Y.R., Kim, J.J., Yin, J.K., Li, L.H., Petell, C.J., Tan, X.F., Zhang, Z.M., Coan, J.P., Gao, L.F., Cai, L., Detrick, B., Cetin, B., Cui, Q., Strahl, B.D., Gozani, O., Wang, Y.S., Miller, K.M., O’Leary, S.E., Wade, P.A., Patel, D.J., Wang, G.G., and Song, J.K., 2020. Direct readout of heterochromatic H3K9me3 regulates DNMT1-mediated maintenance DNA methylation. Proc. Natl. Acad. Sci. U. S. A. 117, 18439-18447.
    [117]
    Riggs, A.D., 1975. X inactivation, differentiation, and DNA methylation. Cytogenet Genome Res. 14, 9-25.
    [118]
    Ronn, T., Volkov, P., Gillberg, L., Kokosar, M., Perfilyev, A., Jacobsen, A.L., Jorgensen, S.W., Brons, C., Jansson, P.A., Eriksson, K.F., Pedersen, O., Hansen, T., Groop, L., Stener-Victorin, E., Vaag, A., Nilsson, E., and Ling, C., 2015. Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood. Hum. Mol. Genet. 24, 3792-3813.
    [119]
    Rosic, S., Amouroux, R., Requena, C.E., Gomes, A., Emperle, M., Beltran, T., Rane, J.K., Linnett, S., Selkirk, M.E., Schiffer, P.H., Bancroft, A.J., Grencis, R.K., Jeltsch, A., Hajkova, P., and Sarkies, P., 2018. Evolutionary analysis indicates that DNA alkylation damage is a byproduct of cytosine DNA methyltransferase activity. Nat. Genet. 50, 452-459.
    [120]
    Rothbart, S.B., Dickson, B.M., Ong, M.S., Krajewski, K., Houliston, S., Kireev, D.B., Arrowsmith, C.H., and Strahl, B.D., 2013. Multivalent histone engagement by the linked tandem Tudor and PHD domains of UHRF1 is required for the epigenetic inheritance of DNA methylation. Genes Dev. 27, 1288-1298.
    [121]
    Rothbart, S.B., Krajewski, K., Nady, N., Tempel, W., Xue, S., Badeaux, A.I., Barsyte-Lovejoy, D., Martinez, J.Y., Bedford, M.T., Fuchs, S.M., Arrowsmith, C.H., and Strahl, B.D., 2012. Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat. Struct. Mol. Biol. 19, 1155-1160.
    [122]
    Rulands, S., Lee, H.J., Clark, S.J., Angermueller, C., Smallwood, S.A., Krueger, F., Mohammed, H., Dean, W., Nichols, J., Rugg-Gunn, P., Kelsey, G., Stegle, O., Simons, B.D., and Reik, W., 2018. Genome-Scale Oscillations in DNA Methylation during Exit from Pluripotency. Cell Syst. 7, 63-76.
    [123]
    Schrader, A., Gross, T., Thalhammer, V., and Langst, G., 2015. Characterization of Dnmt1 binding and DNA methylation on nucleosomes and nucleosomal arrays. PLoS One 10, e0140076.
    [124]
    Schubeler, D., 2015. Function and information content of DNA methylation. Nature 517, 321-326.
    [125]
    Seisenberger, S., Andrews, S., Krueger, F., Arand, J., Walter, J., Santos, F., Popp, C., Thienpont, B., Dean, W., and Reik, W., 2012. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell 48, 849-862.
    [126]
    Shaffer, S.M., Emert, B.L., Hueros, R.A.R., Cote, C., Harmange, G., Schaff, D.L., Sizemore, A.E., Gupte, R., Torre, E., Singh, A., Bassett, D.S., and Raj, A., 2020. Memory sequencing reveals heritable single-cell gene expression programs associated with distinct cellular behaviors. Cell 182, 947-959.
    [127]
    Sharif, J., Muto, M., Takebayashi, S.I., Suetake, I., Iwamatsu, A., Endo, T.A., Shinga, J., Mizutani-Koseki, Y., Toyoda, T., Okamura, K., Tajima, S., Mitsuya, K., Okano, M., and Koseki, H., 2007. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450, 908-912.
    [128]
    Shen, L., Inoue, A., He, J., Liu, Y.T., Lu, F.L., and Zhang, Y., 2014. Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes. Cell Stem Cell 15, 459-470.
    [129]
    Shih, A.H., Abdel-Wahab, O., Patel, J.P., and Levine, R.L., 2012. The role of mutations in epigenetic regulators in myeloid malignancies. Nat. Rev. Cancer 12, 599-612.
    [130]
    Shipony, Z., Mukamel, Z., Cohen, N.M., Landan, G., Chomsky, E., Zeliger, S.R., Fried, Y.C., Ainbinder, E., Friedman, N., and Tanay, A., 2014. Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells. Nature 513, 115-119.
    [131]
    Smith, Z.D., Chan, M.M., Mikkelsen, T.S., Gu, H.C., Gnirke, A., Regev, A., and Meissner, A., 2012. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484, 339-344.
    [132]
    Song, J., Rechkoblit, O., Bestor, T.H., and Patel, D.J., 2011. Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science 331, 1036-1040.
    [133]
    Spada, F., Schiffers, S., Kirchner, A., Zhang, Y., Arista, G., Kosmatchev, O., Korytiakova, E., Rahimoff, R., Ebert, C., and Carell, T., 2020. Active turnover of genomic methylcytosine in pluripotent cells. Nat Chem. Biol. 16, 1411-1419.
    [134]
    Stadler, M.B., Murr, R., Burger, L., Ivanek, R., Lienert, F., Scholer, A., Wirbelauer, C., Oakeley, E.J., Gaidatzis, D., Tiwari, V.K., and Schubeler, D., 2011. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490-495.
    [135]
    Suzuki, T., Maeda, S., Furuhata, E., Shimizu, Y., Nishimura, H., Kishima, M., and Suzuki, H., 2017. A screening system to identify transcription factors that induce binding site-directed DNA demethylation. Epigenetics Chromatin 10, 60.
    [136]
    Syeda, F., Fagan, R.L., Wean, M., Avvakumov, G.V., Walker, J.R., Xue, S., Dhe-Paganon, S., and Brenner, C., 2011. The replication focus targeting sequence (RFTS) Domain Is a DNA-competitive inhibitor of Dnmt1. J. Biol. Chem. 286, 15344-15351.
    [137]
    Takahashi, N., Coluccio, A., Thorball, C.W., Planet, E., Shi, H., Offner, S., Turelli, P., Imbeault, M., Ferguson-Smith, A.C., and Trono, D., 2019. ZNF445 is a primary regulator of genomic imprinting. Genes Dev. 33, 49-54.
    [138]
    Takeshita, K., Suetake, I., Yamashita, E., Suga, M., Narita, H., Nakagawa, A., and Tajima, S., 2011. Structural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1). Proc. Natl. Acad. Sci. U. S. A. 108, 9055-9059.
    [139]
    Tao, Y., Xi, S., Shan, J., Maunakea, A., Che, A., Briones, V., Lee, E.Y., Geiman, T., Huang, J., and Stephens, R., 2011. Lsh, chromatin remodeling family member, modulates genome-wide cytosine methylation patterns at nonrepeat sequences. Proc. Natl. Acad. Sci. U. S. A. 108, 5626-5631.
    [140]
    Thurman, R.E., Rynes, E., Humbert, R., Vierstra, J., Maurano, M.T., Haugen, E., Sheffield, N.C., Stergachis, A.B., Wang, H., Vernot, B., Garg, K., John, S., Sandstrom, R., Bates, D., Boatman, L., Canfield, T.K., Diegel, M., Dunn, D., Ebersol, A.K., Frum, T., Giste, E., Johnson, A.K., Johnson, E.M., Kutyavin, T., Lajoie, B., Lee, B.K., Lee, K., London, D., Lotakis, D., Neph, S., Neri, F., Nguyen, E.D., Qu, H.Z., Reynolds, A.P., Roach, V., Safi, A., Sanchez, M.E., Sanyal, A., Shafer, A., Simon, J.M., Song, L.Y., Vong, S., Weaver, M., Yan, Y.Q., Zhang, Z.C., Zhang, Z.Z., Lenhard, B., Tewari, M., Dorschner, M.O., Hansen, R.S., Navas, P.A., Stamatoyannopoulos, G., Iyer, V.R., Lieb, J.D., Sunyaev, S.R., Akey, J.M., Sabo, P.J., Kaul, R., Furey, T.S., Dekker, J., Crawford, G.E., and Stamatoyannopoulos, J.A., 2012. The accessible chromatin landscape of the human genome. Nature 489, 75-82.
    [141]
    Tollefsbol, T.O., and Hutchison, C.A., 1997. Control of methylation spreading in synthetic DNA sequences by the murine DNA methyltransferase. J. Mol. Biol. 269, 494-504.
    [142]
    Tsumura, A., Hayakawa, T., Kumaki, Y., Takebayashi, S., Sakaue, M., Matsuoka, C., Shimotohno, K., Ishikawa, F., Li, E., Ueda, H.R., Nakayama, J., and Okano, M., 2006. Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells 11, 805-814.
    [143]
    Turker, M.S., Swisshelm, K., Smith, A.C., and Martin, G.M., 1989. A partial methylation profile for a CpG site Is stably maintained in mammalian-tissues and cultured-cell lines. J. Biol. Chem. 264, 11632-11636.
    [144]
    Valinluck, V., and Sowers, L.C., 2007. Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res. 67, 946-950.
    [145]
    Vaughan, R.M., Dickson, B.M., Whelihan, M.F., Johnstone, A.L., Cornett, E.M., Cheek, M.A., Ausherman, C.A., Cowles, M.W., Sun, Z.W., and Rothbart, S.B., 2018. Chromatin structure and its chemical modifications regulate the ubiquitin ligase substrate selectivity of UHRF1. Proc. Natl. Acad. Sci. U. S. A. 115, 8775-8780.
    [146]
    Veland, N., Hardikar, S., Zhong, Y., Gayatri, S., Dan, J.M., Strahl, B.D., Rothbart, S.B., Bedford, M.T., and Chen, T.P., 2017. The arginine methyltransferase PRMT6 regulates DNA methylation and contributes to global DNA hypomethylation in cancer. Cell Rep. 21, 3390-3397.
    [147]
    Verma, N., Pan, H., Dore, L.C., Shukla, A., Li, Q.V., Pelham-Webb, B., Teijeiro, V., Gonzalez, F., Krivtsov, A., Chang, C.-J., Papapetrou, E.P., He, C., Elemento, O., and Huangfu, D., 2017. TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells. Nat. Genet. 50, 83-95.
    [148]
    Vilkaitis, G., Suetake, I., Klimasauskas, S., and Tajima, S., 2005. Processive methylation of hemimethylated CpG sites by mouse Dnmt1 DNA methyltransferase. J. Biol. Chem. 280, 64-72.
    [149]
    Wang, L., Zhang, J., Duan, J., Gao, X., Zhu, W., Lu, X., Yang, L., Zhang, J., Li, G., Ci, W., Li, W., Zhou, Q., Aluru, N., Tang, F., He, C., Huang, X., and Liu, J., 2014. Programming and inheritance of parental DNA methylomes in mammals. Cell 157, 979-991.
    [150]
    Wang, C., Zhu, B., and Xiong, J., 2018. Recruitment and reinforcement: maintaining epigenetic silencing. Sci. China Life Sci. 61, 515-522.
    [151]
    Wang, Q., Yu, G., Ming, X., Xia, W., Xu, X., Zhang, Y., Zhang, W., Li, Y., Huang, C., Xie, H., Zhu, B., and Xie, W., 2020. Imprecise DNMT1 activity coupled with neighbor-guided correction enables robust yet flexible epigenetic inheritance. Nat. Genet. 52, 828-839.
    [152]
    von Meyenn, F., Iurlaro, M., Habibi, E., Liu, Ning Q., Salehzadeh-Yazdi, A., Santos, F., Petrini, E., Milagre, I., Yu, M., Xie, Z., Kroeze, Leonie I., Nesterova, Tatyana B., Jansen, Joop H., Xie, H., He, C., Reik, W., and Stunnenberg, Hendrik G., 2016. Impairment of DNA methylation maintenance is the main cause of global demethylation in naive embryonic stem cells. Mol. Cell 62, 848-861.
    [153]
    Watt, F., and Molloy, P.L., 1988. Cytosine methylation prevents binding to DNA of a hela-cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev. 2, 1136-1143.
    [154]
    Wu, H., and Zhang, Y., 2014. Reversing DNA methylation: Mechanisms, genomics, and biological functions. Cell 156, 45-68.
    [155]
    Wu, X.J., and Zhang, Y., 2017. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 18, 517-534.
    [156]
    Xiang, H., Zhu, J., Chen, Q., Dai, F., Li, X., Li, M., Zhang, H., Zhang, G., Li, D., Dong, Y., Zhao, L., Lin, Y., Cheng, D., Yu, J., Sun, J., Zhou, X., Ma, K., He, Y., Zhao, Y., Guo, S., Ye, M., Guo, G., Li, Y., Li, R., Zhang, X., Ma, L., Kristiansen, K., Guo, Q., Jiang, J., Beck, S., Xia, Q., Wang, W., and Wang, J., 2010. Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. Nat Biotechnol 28, 516.
    [157]
    Xie, S., and Qian, C.M., 2018. The growing complexity of UHRF1-mediated maintenance DNA methylation. Genes 9, 600.
    [158]
    Xu, C., and Corces, V.G., 2018. Nascent DNA methylome mapping reveals inheritance of hemimethylation at CTCF/cohesin sites. Science 359, 1166-1170.
    [159]
    Yamaguchi, L., Nishiyama, A., Misaki, T., Johmura, Y., Ueda, J., Arita, K., Nagao, K., Obuse, C., and Nakanishi, M., 2017. Usp7-dependent histone H3 deubiquitylation regulates maintenance of DNA methylation. Sci. Rep. 7, 55.
    [160]
    Yarychkivska, O., Shahabuddin, Z., Comfort, N., Boulard, M., and Bestor, T.H., 2018. BAH domains and a histone-like motif in DNA methyltransferase 1 (DNMT1) regulate de novo and maintenance methylation in vivo. J. Biol. Chem. 293, 19466-19475.
    [161]
    Yin, Y., Morgunova, E., Jolma, A., Kaasinen, E., Sahu, B., Khund-Sayeed, S., Das, P.K., Kivioja, T., Dave, K., Zhong, F., Nitta, K.R., Taipale, M., Popov, A., Ginno, P.A., Domcke, S., Yan, J., Schubeler, D., Vinson, C., and Taipale, J., 2017. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 356, eaaj2239.
    [162]
    Zemach, A., McDaniel, I.E., Silva, P., and Zilberman, D., 2010. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328, 916-919.
    [163]
    Zhang, H.F., Gao, Q.Q., Tan, S., You, J., Lyu, C., Zhang, Y.P., Han, M.M., Chen, Z.S., Li, J.L., Wang, H.L., Liao, L.J., Qin, J., Li, J.W., and Wong, J.M., 2019. SET8 prevents excessive DNA methylation by methylation-mediated degradation of UHRF1 and DNMT1. Nucleic Acids Res. 47, 9053-9068.
    [164]
    Zhang, W.W., Spector, T.D., Deloukas, P., Bell, J.T., and Engelhardt, B.E., 2015. Predicting genome-wide DNA methylation using methylation marks, genomic position, and DNA regulatory elements. Genome Biol. 16, 14.
    [165]
    Zhao, L., Sun, M.A., Li, Z.J., Bai, X., Yu, M., Wang, M., Liang, L.J., Shao, X.J., Arnovitz, S., Wang, Q.F., He, C., Lu, X.M., Chen, J.J., and Xie, H.H., 2014. The dynamics of DNA methylation fidelity during mouse embryonic stem cell self-renewal and differentiation. Genome Res. 24, 1296-1307.
    [166]
    Zhao, Q., Zhang, J.Q., Chen, R.Y., Wang, L.N., Li, B., Cheng, H., Duan, X.Y., Zhu, H.J., Wei, W., Li, J.W., Wu, Q.H., Han, J.D.J., Yu, W.Q., Gao, S.R., Li, G.H., and Wong, J.M., 2016. Dissecting the precise role of H3K9 methylation in crosstalk with DNA maintenance methylation in mammals. Nat. Commun. 7, 12464.
    [167]
    Zhao, Z., Zhang, Z., Li, J., Dong, Q., Xiong, J., Li, Y., Lan, M., Li, G., and Zhu, B., 2020. Sustained TNF-α stimulation leads to transcriptional memory that greatly enhances signal sensitivity and robustness. eLife 9, e61965.
    [168]
    Zhou, W., Dinh, H.Q., Ramjan, Z., Weisenberger, D.J., Nicolet, C.M., Shen, H., Laird, P.W., and Berman, B.P., 2018. DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nat. Genet. 50, 591-602.
    [169]
    Ziller, M.J., Gu, H.C., Muller, F., Donaghey, J., Tsai, L.T.Y., Kohlbacher, O., De Jager, P.L., Rosen, E.D., Bennett, D.A., Bernstein, B.E., Gnirke, A., and Meissner, A., 2013. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477-481.
    [170]
    Zuo, X.P., Sheng, J.P., Lau, H.T., McDonald, C.M., Andrade, M., Cullen, D.E., Bell, F.T., Iacovino, M., Kyba, M., Xu, G.L., and Li, X.J., 2012. Zinc finger protein ZFP57 requires its co-factor to recruit DNA methyltransferases and maintains DNA methylation imprint in embryonic stem cells via its transcriptional repression domain. J. Biol. Chem. 287, 2107-2118.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (195) PDF downloads (23) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return