5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 4
Apr.  2021
Turn off MathJax
Article Contents

PARK16 locus: Differential effects of the non-coding rs823114 on Parkinson's disease risk, RNA expression, and DNA methylation

doi: 10.1016/j.jgg.2020.10.010
Funds:

This work was supported by Chaya Charitable Fund and Alrov Fund. We would like to thank Ravi Challa, Helen McLaughlin, and Thomas M. Carlile from Biogen for contributions to the RNAseq data generation workflow in the second cohort. We would like to thank the Genome Aggregation Database (gnomAD) and the groups that provided exome and genome variant data to this resource. A full list of contributing groups can be found at https://gnomad.broadinstitute.org/about. The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. The data used for the analyses described in this manuscript were obtained from the GTEx Portal on September 26, 2019.

  • Received Date: 2020-08-11
  • Publish Date: 2021-04-20
  • loading
  • Blauwendraat, C., Francescatto, M., Gibbs, J.R., Jansen, I.E., Simon-Sanchez, J., Hernandez, D.G., Dillman, A.A., Singleton, A.B., Cookson, M.R., Rizzu, P., et al., 2016. Comprehensive promoter level expression quantitative trait loci analysis of the human frontal lobe. Genome Med. 8, 65.
    Blauwendraat, C., Reed, X., Krohn, L., Heilbron, K., Bandres-Ciga, S., Tan, M., Gibbs, J.R., Hernandez, D.G., Kumaran, R., Langston, R., et al., 2020. Genetic modifiers of risk and age at onset in GBA associated Parkinson’s disease and Lewy body dementia. Brain 143, 234-248.
    Chen, J.A., 2018. Gene co-expression network analysis implicates microRNA processing in Parkinson’s disease pathogenesis. Neurodegener. Dis. 18, 191-199.
    Gan-Or, Z., Amshalom, I., Kilarski, L.L., Bar-Shira, A., Gana-Weisz, M., Mirelman, A., Marder, K., Bressman, S., Giladi, N., Orr-Urtreger, A., 2015. Differential effects of severe vs mild GBA mutations on Parkinson disease. Neurology 84, 880-887.
    Gan-Or, Z., Bar-Shira, A., Dahary, D., Mirelman, A., Kedmi, M., Gurevich, T., Giladi, N., Orr-Urtreger, A., 2012. Association of sequence alterations in the putative promoter of RAB7L1 with a reduced Parkinson disease risk. Arch. Neurol. 69, 105‒10.
    Goldstein, O., Gana-Weisz, M., Cohen-Avinoam, D., Shiner, T., Thaler, A., Cedarbaum, J.M., John, S., Lalioti, M., Gurevich, T., Bar-Shira, A., et al., 2019. Revisiting the non-Gaucher-GBA-E326K carrier state: is it sufficient to increase Parkinson’s disease risk? Mol. Genet. Metabol. 128, 470-475.
    Iwaki, H., Blauwendraat, C., Makarious, M.B., Bandres-Ciga, S., Leonard, H.L., Gibbs, J.R., Hernandez, D.G., Scholz, S.W., Faghri, F., Nalls, M.A., et al., International Parkinson’s Disease Genomics Consortium, 2020. Penetrance of Parkinson’s disease in LRRK2 p.G2019S carriers is modified by a polygenic risk score. Mov. Disord. 35, 774-780.
    Keogh, M.J., Wei, W., Aryaman, J., Wilson, I., Talbot, K., Turner, M.R., Mckenzie, C.A., Troakes, C., Attems, J., Smith, C., et al., 2018. Oligogenic genetic variation of neurodegenerative disease genes in 980 postmortem human brains. J. Neurol. Neurosurg. Psychiatry 89, 813-816.
    Kolisek, M., Sponder, G., Mastrototaro, L., Smorodchenko, A., Launay, P., Vormann, J., Schweigel-Rontgen, M., 2013. Substitution p.A350V in Na+/Mg2+ exchanger SLC41A1, potentially associated with Parkinson’s disease, is a gainof-function mutation. PLoS One 8, e71096.
    Liu, X., Cheng, R., Verbitsky, M., Kisselev, S., Browne, A., Mejia-Sanatana, H., Louis, E.D., Cote, L.J., Andrews, H., Waters, C., et al., 2011. Genome-wide association study identifies candidate genes for Parkinson’s disease in an Ashkenazi Jewish population. BMC Med. Genet. 12, 104.
    Lubbe, S.J., Escott-Price, V., Gibbs, J.R., Nalls, M.A., Bras, J., Price, T.R., Nicolas, A., Jansen, I.E., Mok, K.Y., Pittman, A.M., et al., For International Parkinson’s Disease Genomics Consortium, 2016. Additional rare variant analysis in Parkinson’s disease cases with and without known pathogenic mutations: evidence for oligogenic inheritance. Hum. Mol. Genet. 25, 5483-5489.
    Nalls, M.A., Blauwendraat, C., Vallerga, C.L., Heilbron, K., Bandres-Ciga, S., Chang, D., Tan, M., Kia, D.A., Noyce, A.J., Xue, A., et al., 2019. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091-1102.
    Nalls, M.A., Pankratz, N., Lill, C.M., Do, C.B., Hernandez, D.G., Saad, M., Destefano, A.L., Kara, E., Bras, J., Sharma, M., et al., 2014. Large-scale metaanalysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 46, 989-993.
    Pihlstrom, L., Rengmark, A., Bjornara, K.A., Dizdar, N., Fardell, C., Forsgren, L., Holmberg, B., Larsen, J.P., Linder, J., Nissbrandt, H., et al., 2015. Fine mapping and resequencing of the PARK16 locus in Parkinson’s disease. J. Hum. Genet. 60, 357-362.
    Ramirez, A., Ziegler, A., Winkler, S., Kottwitz, J., Giesen, R., Diaz-Grez, F., Miranda, M., Venegas, P., Godoy, O.T., Avello, R., et al., 2011. Association of Parkinson disease to PARK16 in a Chilean sample. Park. Relat. Disord. 17, 70-71.
    Satake, W., Nakabayashi, Y., Mizuta, I., Hirota, Y., Ito, C., Kubo, M., Kawaguchi, T., Tsunoda, T., Watanabe, M., Takeda, A., et al., 2009. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat. Genet. 41, 1303-1307.
    Seol, W., Nam, D., Son, I., 2019. Rab GTPases as physiological substrates of LRRK2 kinase. Exp. Neurobiol. 28, 134-145.
    Simon-Sanchez, J., Schulte, C., Bras, J.M., Sharma, M., Gibbs, J.R., Berg, D., Paisan-Ruiz, C., Lichtner, P., Scholz, S.W., Hernandez, D.G., et al., 2009. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat. Genet. 41, 1308-1312.
    Vacic, V., Ozelius, L.J., Clark, L.N., Bar-Shira, A., Gana-Weisz, M., Gurevich, T., Gusev, A., Kedmi, M., Kenny, E.E., Liu, X., et al., 2014. Genome-wide mapping of IBD segments in an Ashkenazi PD cohort identifies associated haplotypes. Hum. Mol. Genet. 23, 4693-4702.
    Yamanaka, R., Shindo, Y., Oka, K., 2019. Magnesium is a key player in neuronal maturation and neuropathology. Int. J. Mol. Sci. 20, 3439.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (158) PDF downloads (15) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return