5.9
CiteScore
5.9
Impact Factor
Volume 47 Issue 11
Nov.  2020
Turn off MathJax
Article Contents

SeqCor: correct the effect of guide RNA sequences in clustered regularly interspaced short palindromic repeats/Cas9 screening by machine learning algorithm

doi: 10.1016/j.jgg.2020.10.007
More Information
  • Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based screening using various guide RNA (gRNA) libraries has been executed to identify functional components for a wide range of phenotypes with regard to numerous cell types and organisms. Using data from public CRISPR/Cas9-based screening experiments, we found that the sequences of gRNAs in the library influence CRISPR/Cas9-based screening. As building a standard strategy for correcting results of all gRNA libraries is impractical, we developed SeqCor, an open-source programming bundle that enables researchers to address the result bias potentially triggered by the composition of gRNA sequences via the organization of gRNA in the library used in CRISPR/Cas9-based screening. Furthermore, SeqCor completely computerizes the extraction of sequence features that may influence single-guide RNA knockout efficiency using a machine learning approach. Taken together, we have developed a software program bundle that ought to be beneficial to the CRISPR/Cas9-based screening platform.
  • loading
  • [1]
    Breiman, L., 2001. Random forests. Machine Learning 45, 5-32.
    [2]
    Canver, M.C., Smith, E.C., Sher, F., Pinello, L., Sanjana, N.E., Shalem, O., Chen, D.D., Schupp, P.G., Vinjamur, D.S., Garcia, S.P., Luc, S., Kurita, R., Nakamura, Y., Fujiwara, Y., Maeda, T., Yuan, G.C., Zhang, F., Orkin, S.H., Bauer, D.E., 2015. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527, 192-197.
    [3]
    Chari, R., Mali, P., Moosburner, M., Church, G.M., 2015. Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat. Methods 12, 823-826.
    [4]
    Chen, S., Sanjana, N.E., Zheng, K., Shalem, O., Lee, K., Shi, X., Scott, D.A., Song, J., Pan, J.Q., Weissleder, R., Lee, H., Zhang, F., Sharp, P.A., 2015. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246-1260.
    [5]
    Cho, S.W., Kim, S., Kim, Y., Kweon, J., Kim, H.S., Bae, S., Kim, J.S., 2014. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 24, 132-141.
    [6]
    Chuai, G., Ma, H., Yan, J., Chen, M., Hong, N., Xue, D., Zhou, C., Zhu, C., Chen, K., Duan, B., Gu, F., Qu, S., Huang, D., Wei, J., Liu, Q., 2018. DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Genome Biol. 19, 80.
    [7]
    Cong, L., Ran, F.A., Cox, D., Lin, S.L., Barretto, R., Habib, N., Hsu, P.D., Wu, X.B., Jiang, W.Y., Marraffini, L.A., Zhang, F., 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
    [8]
    Doench, J.G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E.W., Donovan, K.F., Smith, I., Tothova, Z., Wilen, C., Orchard, R., Virgin, H.W., Listgarten, J., Root, D.E., 2016. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184-191.
    [9]
    Frock, R.L., Hu, J., Meyers, R.M., Ho, Y.J., Kii, E., Alt, F.W., 2015. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat. Biotechnol. 33, 179-186.
    [10]
    Fu, Y., Foden, J.A., Khayter, C., Maeder, M.L., Reyon, D., Joung, J.K., Sander, J.D., 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822-826.
    [11]
    Gagnon, J.A., Valen, E., Thyme, S.B., Huang, P., Akhmetova, L., Pauli, A., Montague, T.G., Zimmerman, S., Richter, C., Schier, A.F., 2014. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 9, e98186.
    [12]
    Guilinger, J.P., Thompson, D.B., Liu, D.R., 2014. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32, 577-582.
    [13]
    Hart, T., Chandrashekhar, M., Aregger, M., Steinhart, Z., Brown, K.R., MacLeod, G., Mis, M., Zimmermann, M., Fradet-Turcotte, A., Sun, S., Mero, P., Dirks, P., Sidhu, S., Roth, F.P., Rissland, O.S., Durocher, D., Angers, S., Moffat, J., 2015. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163, 1515-1526.
    [14]
    Hart, T., Tong, A.H.Y., Chan, K., Van Leeuwen, J., Seetharaman, A., Aregger, M., Chandrashekhar, M., Hustedt, N., Seth, S., Noonan, A., Habsid, A., Sizova, O., Nedyalkova, L., Climie, R., Tworzyanski, L., Lawson, K., Sartori, M.A., Alibeh, S., Tieu, D., Masud, S., Mero, P., Weiss, A., Brown, K.R., Usaj, M., Billmann, M., Rahman, M., Constanzo, M., Myers, C.L., Andrews, B.J., Boone, C., Durocher, D., Moffat, J., 2017. Evaluation and design of genome-wide CRISPR/SpCas9 knockout screens. G3 7, 2719-2727.
    [15]
    Heigwer, F., Kerr, G., Boutros, M., 2014. E-CRISP: fast CRISPR target site identification. Nat. Methods 11, 122-123.
    [16]
    Hsu, P.D., Lander, E.S., Zhang, F., 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278.
    [17]
    Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y., Fine, E.J., Wu, X., Shalem, O., Cradick, T.J., Marraffini, L.A., Bao, G., Zhang, F., 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827-832.
    [18]
    Kim, D., Bae, S., Park, J., Kim, E., Kim, S., Yu, H.R., Hwang, J., Kim, J.I., Kim, J.S., 2015. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 12, 237-243.
    [19]
    Kim, D., Kim, S., Kim, S., Park, J., Kim, J.S., 2016. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome Res. 26, 406-415.
    [20]
    Komor, A.C., Badran, A.H., Liu, D.R., 2017. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168, 20-36.
    [21]
    Labun, K., Montague, T.G., Gagnon, J.A., Thyme, S.B., Valen, E., 2016. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res. 44, W272-276.
    [22]
    Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359.
    [23]
    Li, W., Xu, H., Xiao, T., Cong, L., Love, M.I., Zhang, F., Irizarry, R.A., Liu, J.S., Brown, M., Liu, X.S., 2014. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554.
    [24]
    Prykhozhij, S.V., Rajan, V., Gaston, D., Berman, J.N., 2015. CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One 10, e0119372.
    [25]
    Ran, F.A., Cong, L., Yan, W.X., Scott, D.A., Gootenberg, J.S., Kriz, A.J., Zetsche, B., Shalem, O., Wu, X., Makarova, K.S., Koonin, E.V., Sharp, P.A., Zhang, F., 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186-191.
    [26]
    Ran, F.A., Hsu, P.D., Lin, C.Y., Gootenberg, J.S., Konermann, S., Trevino, A.E., Scott, D.A., Inoue, A., Matoba, S., Zhang, Y., Zhang, F., 2013a. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389.
    [27]
    Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., Zhang, F., 2013b. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281-2308.
    [28]
    Rath, D., Amlinger, L., Rath, A., Lundgren, M., 2015. The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 117, 119-128.
    [29]
    Saleh-Gohari, N., Helleday, T., 2004. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res. 32, 3683-3688.
    [30]
    Sanjana, N.E., Wright, J., Zheng, K., Shalem, O., Fontanillas, P., Joung, J., Cheng, C., Regev, A., Zhang, F., 2016. High-resolution interrogation of functional elements in the noncoding genome. Science 353, 1545-1549.
    [31]
    Seol, J.H., Shim, E.Y., Lee, S.E., 2018. Microhomology-mediated end joining: Good, bad and ugly. Mutat. Res.-Fundam. Mol. Mech. Mutag. 809, 81-87.
    [32]
    Sfeir, A., Symington, L.S., 2015. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem. Sci. 40, 701-714.
    [33]
    Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelson, T., Heckl, D., Ebert, B.L., Root, D.E., Doench, J.G., Zhang, F., 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84-87.
    [34]
    Shalem, O., Sanjana, N.E., Zhang, F., 2015. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 16, 299-311.
    [35]
    Singh, R., Kuscu, C., Quinlan, A., Qi, Y., Adli, M., 2015. Cas9-chromatin binding information enables more accurate CRISPR off-target prediction. Nucleic Acids Res. 43, e118.
    [36]
    Stemmer, M., Thumberger, T., Del Sol Keyer, M., Wittbrodt, J., Mateo, J.L., 2015. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 10, e0124633.
    [37]
    Tsai, S.Q., Zheng, Z., Nguyen, N.T., Liebers, M., Topkar, V.V., Thapar, V., Wyvekens, N., Khayter, C., Iafrate, A.J., Le, L.P., Aryee, M.J., Joung, J.K., 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187-197.
    [38]
    Veres, A., Gosis, B.S., Ding, Q., Collins, R., Ragavendran, A., Brand, H., Erdin, S., Cowan, C.A., Talkowski, M.E., Musunuru, K., 2014. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell 15, 27-30.
    [39]
    Wang, T., Birsoy, K., Hughes, N.W., Krupczak, K.M., Post, Y., Wei, J.J., Lander, E.S., Sabatini, D.M., 2015a. Identification and characterization of essential genes in the human genome. Science 350, 1096-1101.
    [40]
    Wang, T., Wei, J.J., Sabatini, D.M., Lander, E.S., 2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80-84.
    [41]
    Wang, X., Wang, Y., Wu, X., Wang, J., Wang, Y., Qiu, Z., Chang, T., Huang, H., Lin, R.J., Yee, J.K., 2015b. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat. Biotechnol. 33, 175-178.
    [42]
    Wong, N., Liu, W., Wang, X., 2015. WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol. 16, 218.
    [43]
    Xu, H., Xiao, T., Chen, C.H., Li, W., Meyer, C.A., Wu, Q., Wu, D., Cong, L., Zhang, F., Liu, J.S., Brown, M., Liu, X.S., 2015. Sequence determinants of improved CRISPR sgRNA design. Genome Res. 25, 1147-1157.
    [44]
    Zhou, Y., Zhu, S., Cai, C., Yuan, P., Li, C., Huang, Y., Wei, W., 2014. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509, 487-491.
    [45]
    Zhu, S., Li, W., Liu, J., Chen, C.H., Liao, Q., Xu, P., Xu, H., Xiao, T., Cao, Z., Peng, J., Yuan, P., Brown, M., Liu, X.S., Wei, W., 2016. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat. Biotechnol. 34, 1279-1286.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures (4)  / Tables (4)

    Article Metrics

    Article views (84) PDF downloads (5) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return