5.9
CiteScore
5.9
Impact Factor
Volume 47 Issue 9
Sep.  2020
Turn off MathJax
Article Contents

Receptor-like kinase OsCR4 controls leaf morphogenesis and embryogenesis by fixing the distribution of auxin in rice

doi: 10.1016/j.jgg.2020.08.002
More Information
  • Cell differentiation is a key event in organ development; it involves auxin gradient formation, cell signaling, and transcriptional regulation. Yet, how these processes are orchestrated during leaf morphogenesis is poorly understood. Here, we demonstrate an essential role for the receptor-like kinase OsCR4 in leaf development. oscr4 loss-of-function mutants displayed short shoots and roots, with tiny, crinkly, or even dead leaves. The delayed outgrowth of the first three leaves and seminal root in oscr4 was due to defects in plumule and radicle formation during embryogenesis. The deformed epidermal, mesophyll, and vascular tissues observed in oscr4 leaves arose at the postembryo stage; the corresponding expression pattern of proOsCR4:GUS in embryos and young leaves suggests that OsCR4 functions in these tissues. Signals from the auxin reporter DR5rev:VENUS were found to be altered in oscr4 embryos and disorganized in oscr4 leaves, in which indole-3-acetic acid accumulation was further revealed by immunofluorescence. OsWOX3A, which is auxin responsive and related to leaf development, was activated extensively and ectopically in oscr4 leaves, partially accounting for the observed lack of cell differentiation. Our data suggest that OsCR4 plays a fundamental role in leaf morphogenesis and embryogenesis by fixing the distribution of auxin.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Bar, M., Ori, N., 2014. Leaf development and morphogenesis. Development 141, 4219-4230.
    [2]
    Becraft, P.W., Stinard, P.S., McCarty, D.R., 1996. CRINKLY4: a TNFR-like receptor kinase involved in maize epidermal differentiation. Science 273, 1406-1409.
    [3]
    Becraft, P.W., Kang, S.H., Suh, S.G., 2001. The maize CRINKLY4 receptor kinase controls a cell-autonomous differentiation response. Plant Physiol.. 127, 486-496.
    [4]
    Berleth, T., Mattsson, J., 2000. Vascular development: tracing signals along veins. Curr. Opin. Plant Biol. 3, 406-411.
    [5]
    Cheng, S., Huang, Y., Zhu, N., Zhao, Y., 2014. The rice WUSCHEL-related homeobox genes are involved in reproductive organ development, hormone signaling and abiotic stress response. Gene 549, 266-274.
    [6]
    Cho, S.H., Yoo, S.C., Zhang, H., Pandeya, D., Koh, H.J., Hwang, J.Y., Kim, G.T., Paek, N.C., 2013. The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. New Phytol.. 198, 1071-1084.
    [7]
    Cho, S.H., Kang, K., Lee, S.H., Lee, I.J., Paek, N.C., 2016. OsWOX3A is involved in negative feedback regulation of the gibberellic acid biosynthetic pathway in rice (Oryza sativa). J. Exp. Bot.. 67, 1677-1687.
    [8]
    Dai, M., Hu, Y., Zhao, Y., Liu, H., Zhou, D.X., 2007. A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development. Plant Physiol.. 144, 380-390.
    [9]
    De Smet, I., Voss, U., Jurgens, G., Beeckman, T., 2009. Receptor-like kinases shape the plant. Nat. Cell Biol. 11, 1166-1173.
    [10]
    Demko, V., Ako, E., Perroud, P.F., Quatrano, R., Olsen, O.A., 2016. The phenotype of the CRINKLY4 deletion mutant of Physcomitrella patens suggests a broad role in developmental regulation in early land plants. Planta 244, 275-284.
    [11]
    Etchells, J.P., Provost, C.M., Mishra, L., Turner, S.R., 2013. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. Development 140, 2224-2234.
    [12]
    Fisher, K., Turner, S., 2007. PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr. Biol. 17, 1061-1066.
    [13]
    Gifford, M.L., Dean, S., Ingram, G.C., 2003. The Arabidopsis ACR4 gene plays a role in cell layer organisation during ovule integument and sepal margin development. Development 130, 4249-4258.
    [14]
    Honda, E., Yew, C.L., Yoshikawa, T., Sato, Y., Hibara, K.I., Itoh, J.I., 2018. LEAF LATERAL SYMMETRY1, a member of the WUSCHEL-RELATED HOMEOBOX3 gene family, regulates lateral organ development differentially from other paralogs, NARROW LEAF2 and NARROW LEAF3 in rice. Plant Cell Physiol.. 59, 376-391.
    [15]
    Jin, P., Guo, T., Becraft, P.W., 2000. The maize CR4 receptor-like kinase mediates a growth factor-like differentiation response. Genesis 27, 104-116.
    [16]
    Kamiya, N., Nagasaki, H., Morikami, A., Sato, Y., Matsuoka, M., 2003. Isolation and characterization of a rice WUSCHEL-type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem. Plant J.. 35, 429-441.
    [17]
    Kessler, S., Townsley, B., Sinha, N., 2006. L1 division and differentiation patterns influence shoot apical meristem maintenance. Plant Physiol.. 141, 1349-1362.
    [18]
    Lian, G., Ding, Z., Wang, Q., Zhang, D., Xu, J., 2014. Origins and evolution of WUSCHEL-related homeobox protein family in plant kingdom. Sci. World J.. 2014, 534140.
    [19]
    Meyer, M.R., Shah, S., Zhang, J., Rohrs, H., Rao, A.G., 2015. Evidence for intermolecular interactions between the intracellular domains of the Arabidopsis receptor-like kinase ACR4, its homologs and the Wox5 transcription factor. PLoS One 10, e0118861.
    [20]
    Nagasawa, N., Miyoshi, M., Kitano, H., Satoh, H., Nagato, Y., 1996. Mutations associated with floral organ number in rice. Planta 198, 627-633.
    [21]
    Nelson, T., Dengler, N., 1997. Leaf vascular pattern formation. Plant Cell 9, 1121-1135.
    [22]
    Nishimura, T., Koshiba, T., 2019. Immunolocalization of IAA using an anti-IAA-C-antibody raised against carboxyl-linked IAA. Methods Mol. Biol. 1924, 165-172.
    [23]
    Ogawa, M., Shinohara, H., Sakagami, Y., Matsubayashi, Y., 2008. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319, 294.
    [24]
    Ohmori, Y., Tanaka, W., Kojima, M., Sakakibara, H., Hirano, H.-Y., 2013. WUSCHEL-RELATED HOMEOBOX4 is involved in meristem maintenance and is negatively regulated by the CLE gene FCP1 in rice. Plant Cell 25, 229-241.
    [25]
    Porra, R.J., 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth. Res. 73, 149-156.
    [26]
    Prusinkiewicz, P., Crawford, S., Smith, R.S., Ljung, K., Bennett, T., Ongaro, V., Leyser, O., 2009. Control of bud activation by an auxin transport switch. Proc. Natl. Acad. Sci. U.S.A. 106, 17431-17436
    [27]
    Pu, C.X., Ma, Y., Wang, J., Zhang, Y.C., Jiao, X.W., Hu, Y.H., Wang, L.L., Zhu, Z.G., Sun, D., Sun, Y., 2012. Crinkly4 receptor-like kinase is required to maintain the interlocking of the palea and lemma, and fertility in rice, by promoting epidermal cell differentiation. Plant J.. 70, 940-953.
    [28]
    Pu, C.X., Han, Y.F., Zhu, S., Song, F.Y., Zhao, Y., Wang, C.Y., Zhang, Y.C., Yang, Q., Wang, J., Bu, S.L., Sun, L.J., Zhang, S.W., Zhang, S.Q., Sun, D.Y., Sun, Y., 2017. The rice receptor-like kinases DWARF AND RUNTISH SPIKELET1 and 2 repress cell death and affect sugar utilization during reproductive development. Plant Cell 29, 70-89.
    [29]
    Reinhardt, D., Pesce, E.R., Stieger, P., Mandel, T., Baltensperger, K., Bennett, M., Traas, J., Friml, J., Kuhlemeier, C., 2003. Regulation of phyllotaxis by polar auxin transport. Nature 426, 255-260.
    [30]
    Robert, H.S., Grones, P., Stepanova, A.N., Robles, L.M., Lokerse, A.S., Alonso, J.M., Weijers, D., Friml, J., 2013. Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr. Biol. 23, 2506-2512.
    [31]
    Rolland-Lagan, A.G., 2008. Vein patterning in growing leaves: axes and polarities. Curr. Opin. Genet. Dev. 18, 348-353.
    [32]
    Sabater, B., 2018. Evolution and function of the chloroplast. Currrent investigations and perspectives. Int. J. Mol. Sci. 19, 3095.
    [33]
    Sakaguchi, J., Itoh, J., Ito, Y., Nakamura, A., Fukuda, H., Sawa, S., 2010. COE1, an LRR-RLK responsible for commissural vein pattern formation in rice. Plant J.. 63, 405-416.
    [34]
    Scarpella, E., Helariutta, Y., 2010. Vascular pattern formation in plants. Curr. Top. Dev. Biol. 91, 221-265.
    [35]
    Scarpella, E., Marcos, D., Friml, J., Berleth, T., 2006. Control of leaf vascular patterning by polar auxin transport. Genes Dev. 20, 1015-1027.
    [36]
    Scarpella, E., Barkoulas, M., Tsiantis, M., 2010. Control of leaf and vein development by auxin. Cold Spring Harb. Perspect. Biol. 2, a001511.
    [37]
    Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F., Jurgens, G., Laux, T., 2000. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100, 635-644.
    [38]
    Stahl, Y., Grabowski, S., Bleckmann, A., Kuhnemuth, R., Weidtkamp-Peters, S., Pinto, K.G., Kirschner, G.K., Schmid, J.B., Wink, R.H., Hulsewede, A., Felekyan, S., Seidel, C.A., Simon, R., 2013. Moderation of Arabidopsis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase complexes. Curr. Biol. 23, 362-371.
    [39]
    Sorefan, K., Girin, T., Liljegren, S.J., Ljung, K., Robles, P., Galvan-Ampudia, C.S., Offringa, R., Friml, J., Yanofsky, M.F., Ostergaard, L., 2009. A regulated auxin minimum is required for seed dispersal in Arabidopsis. Nature 459, 583-586.
    [40]
    Stahl, Y., Wink, R.H., Ingram, G.C., Simon, R., 2009. A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr. Biol. 19, 909-914.
    [41]
    Takada, S., Iida, H., 2014. Specification of epidermal cell fate in plant shoots. Front. Plant Sci. 5, 49.
    [42]
    Tanaka, H., Watanabe, M., Sasabe, M., Hiroe, T., Tanaka, T., Tsukaya, H., Ikezaki, M., Machida, C., Machida, Y., 2007. Novel receptor-like kinase ALE2 controls shoot development by specifying epidermis in Arabidopsis. Development 134, 1643-1652.
    [43]
    Tanaka, H., Watanabe, M., Watanabe, D., Tanaka, T., Machida, C., Machida, Y., 2002. ACR4, a putative receptor kinase gene of Arabidopsis thaliana, that is expressed in the outer cell layers of embryos and plants, is involved in proper embryogenesis. Plant Cell Physiol.. 43, 419-428.
    [44]
    van der Graaff, E., Laux, T., Rensing, S.A., 2009. The WUS homeobox-containing (WOX) protein family. Genome Biol. 10, 248.
    [45]
    Wang, J.R., Hu, H., Wang, G.H., Li, J., Chen, J.Y., Wu, P., 2009. Expression of PIN genes in rice (Oryza sativa L.): tissue specificity and regulation by hormones. Mol. Plant 2, 823-831.
    [46]
    Wang, D., Pei, K., Fu, Y., Sun, Z., Li, S., Liu, H., Tang, K., Han, B., Tao, Y., 2007. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394, 13-24.
    [47]
    Watanabe, M., Tanaka, H., Watanabe, D., Machida, C., Machida, Y., 2004. The ACR4 receptor-like kinase is required for surface formation of epidermis-related tissues in Arabidopsis thaliana. Plant J. 39, 298-308.
    [48]
    Yamamoto, Y., Kamiya, N., Morinaka, Y., Matsuoka, M., Sazuka, T., 2007. Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol.. 143, 1362-1371.
    [49]
    Yang, Y., Peng, H., Huang, H., Wu, J., Jia, S., Huang, D., Lu, T., 2004. Large-scale production of enhancer trapping lines for rice functional genomics. Plant Sci. 167, 281-288.
    [50]
    Yasui, Y., Ohmori, Y., Takebayashi, Y., Sakakibara, H., Hirano, H.Y., 2018. WUSCHEL-RELATED HOMEOBOX4 acts as a key regulator in early leaf development in rice. PLoS Genet. 14, e1007365.
    [51]
    Zhang, H., Wu, K., Wang, Y., Peng, Y., Hu, F., Wen, L., Han, B., Qian, Q., Teng, S., 2012. A WUSCHEL-like homeobox gene, OsWOX3B responses to NUDA/GL-1 locus in rice. Rice 5, 30.
    [52]
    Zhang, H., Lin, X., Han, Z., Qu, L.J., Chai, J., 2016. Crystal structure of PXY-TDIF complex reveals a conserved recognition mechanism among CLE peptide-receptor pairs. Cell Res. 26, 543-555.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures (6)

    Article Metrics

    Article views (85) PDF downloads (5) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return