[1] |
Bar, M., Ori, N., 2014. Leaf development and morphogenesis. Development 141, 4219-4230.
|
[2] |
Becraft, P.W., Stinard, P.S., McCarty, D.R., 1996. CRINKLY4: a TNFR-like receptor kinase involved in maize epidermal differentiation. Science 273, 1406-1409.
|
[3] |
Becraft, P.W., Kang, S.H., Suh, S.G., 2001. The maize CRINKLY4 receptor kinase controls a cell-autonomous differentiation response. Plant Physiol.. 127, 486-496.
|
[4] |
Berleth, T., Mattsson, J., 2000. Vascular development: tracing signals along veins. Curr. Opin. Plant Biol. 3, 406-411.
|
[5] |
Cheng, S., Huang, Y., Zhu, N., Zhao, Y., 2014. The rice WUSCHEL-related homeobox genes are involved in reproductive organ development, hormone signaling and abiotic stress response. Gene 549, 266-274.
|
[6] |
Cho, S.H., Yoo, S.C., Zhang, H., Pandeya, D., Koh, H.J., Hwang, J.Y., Kim, G.T., Paek, N.C., 2013. The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. New Phytol.. 198, 1071-1084.
|
[7] |
Cho, S.H., Kang, K., Lee, S.H., Lee, I.J., Paek, N.C., 2016. OsWOX3A is involved in negative feedback regulation of the gibberellic acid biosynthetic pathway in rice (Oryza sativa). J. Exp. Bot.. 67, 1677-1687.
|
[8] |
Dai, M., Hu, Y., Zhao, Y., Liu, H., Zhou, D.X., 2007. A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development. Plant Physiol.. 144, 380-390.
|
[9] |
De Smet, I., Voss, U., Jurgens, G., Beeckman, T., 2009. Receptor-like kinases shape the plant. Nat. Cell Biol. 11, 1166-1173.
|
[10] |
Demko, V., Ako, E., Perroud, P.F., Quatrano, R., Olsen, O.A., 2016. The phenotype of the CRINKLY4 deletion mutant of Physcomitrella patens suggests a broad role in developmental regulation in early land plants. Planta 244, 275-284.
|
[11] |
Etchells, J.P., Provost, C.M., Mishra, L., Turner, S.R., 2013. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. Development 140, 2224-2234.
|
[12] |
Fisher, K., Turner, S., 2007. PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr. Biol. 17, 1061-1066.
|
[13] |
Gifford, M.L., Dean, S., Ingram, G.C., 2003. The Arabidopsis ACR4 gene plays a role in cell layer organisation during ovule integument and sepal margin development. Development 130, 4249-4258.
|
[14] |
Honda, E., Yew, C.L., Yoshikawa, T., Sato, Y., Hibara, K.I., Itoh, J.I., 2018. LEAF LATERAL SYMMETRY1, a member of the WUSCHEL-RELATED HOMEOBOX3 gene family, regulates lateral organ development differentially from other paralogs, NARROW LEAF2 and NARROW LEAF3 in rice. Plant Cell Physiol.. 59, 376-391.
|
[15] |
Jin, P., Guo, T., Becraft, P.W., 2000. The maize CR4 receptor-like kinase mediates a growth factor-like differentiation response. Genesis 27, 104-116.
|
[16] |
Kamiya, N., Nagasaki, H., Morikami, A., Sato, Y., Matsuoka, M., 2003. Isolation and characterization of a rice WUSCHEL-type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem. Plant J.. 35, 429-441.
|
[17] |
Kessler, S., Townsley, B., Sinha, N., 2006. L1 division and differentiation patterns influence shoot apical meristem maintenance. Plant Physiol.. 141, 1349-1362.
|
[18] |
Lian, G., Ding, Z., Wang, Q., Zhang, D., Xu, J., 2014. Origins and evolution of WUSCHEL-related homeobox protein family in plant kingdom. Sci. World J.. 2014, 534140.
|
[19] |
Meyer, M.R., Shah, S., Zhang, J., Rohrs, H., Rao, A.G., 2015. Evidence for intermolecular interactions between the intracellular domains of the Arabidopsis receptor-like kinase ACR4, its homologs and the Wox5 transcription factor. PLoS One 10, e0118861.
|
[20] |
Nagasawa, N., Miyoshi, M., Kitano, H., Satoh, H., Nagato, Y., 1996. Mutations associated with floral organ number in rice. Planta 198, 627-633.
|
[21] |
Nelson, T., Dengler, N., 1997. Leaf vascular pattern formation. Plant Cell 9, 1121-1135.
|
[22] |
Nishimura, T., Koshiba, T., 2019. Immunolocalization of IAA using an anti-IAA-C-antibody raised against carboxyl-linked IAA. Methods Mol. Biol. 1924, 165-172.
|
[23] |
Ogawa, M., Shinohara, H., Sakagami, Y., Matsubayashi, Y., 2008. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319, 294.
|
[24] |
Ohmori, Y., Tanaka, W., Kojima, M., Sakakibara, H., Hirano, H.-Y., 2013. WUSCHEL-RELATED HOMEOBOX4 is involved in meristem maintenance and is negatively regulated by the CLE gene FCP1 in rice. Plant Cell 25, 229-241.
|
[25] |
Porra, R.J., 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth. Res. 73, 149-156.
|
[26] |
Prusinkiewicz, P., Crawford, S., Smith, R.S., Ljung, K., Bennett, T., Ongaro, V., Leyser, O., 2009. Control of bud activation by an auxin transport switch. Proc. Natl. Acad. Sci. U.S.A. 106, 17431-17436
|
[27] |
Pu, C.X., Ma, Y., Wang, J., Zhang, Y.C., Jiao, X.W., Hu, Y.H., Wang, L.L., Zhu, Z.G., Sun, D., Sun, Y., 2012. Crinkly4 receptor-like kinase is required to maintain the interlocking of the palea and lemma, and fertility in rice, by promoting epidermal cell differentiation. Plant J.. 70, 940-953.
|
[28] |
Pu, C.X., Han, Y.F., Zhu, S., Song, F.Y., Zhao, Y., Wang, C.Y., Zhang, Y.C., Yang, Q., Wang, J., Bu, S.L., Sun, L.J., Zhang, S.W., Zhang, S.Q., Sun, D.Y., Sun, Y., 2017. The rice receptor-like kinases DWARF AND RUNTISH SPIKELET1 and 2 repress cell death and affect sugar utilization during reproductive development. Plant Cell 29, 70-89.
|
[29] |
Reinhardt, D., Pesce, E.R., Stieger, P., Mandel, T., Baltensperger, K., Bennett, M., Traas, J., Friml, J., Kuhlemeier, C., 2003. Regulation of phyllotaxis by polar auxin transport. Nature 426, 255-260.
|
[30] |
Robert, H.S., Grones, P., Stepanova, A.N., Robles, L.M., Lokerse, A.S., Alonso, J.M., Weijers, D., Friml, J., 2013. Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr. Biol. 23, 2506-2512.
|
[31] |
Rolland-Lagan, A.G., 2008. Vein patterning in growing leaves: axes and polarities. Curr. Opin. Genet. Dev. 18, 348-353.
|
[32] |
Sabater, B., 2018. Evolution and function of the chloroplast. Currrent investigations and perspectives. Int. J. Mol. Sci. 19, 3095.
|
[33] |
Sakaguchi, J., Itoh, J., Ito, Y., Nakamura, A., Fukuda, H., Sawa, S., 2010. COE1, an LRR-RLK responsible for commissural vein pattern formation in rice. Plant J.. 63, 405-416.
|
[34] |
Scarpella, E., Helariutta, Y., 2010. Vascular pattern formation in plants. Curr. Top. Dev. Biol. 91, 221-265.
|
[35] |
Scarpella, E., Marcos, D., Friml, J., Berleth, T., 2006. Control of leaf vascular patterning by polar auxin transport. Genes Dev. 20, 1015-1027.
|
[36] |
Scarpella, E., Barkoulas, M., Tsiantis, M., 2010. Control of leaf and vein development by auxin. Cold Spring Harb. Perspect. Biol. 2, a001511.
|
[37] |
Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F., Jurgens, G., Laux, T., 2000. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100, 635-644.
|
[38] |
Stahl, Y., Grabowski, S., Bleckmann, A., Kuhnemuth, R., Weidtkamp-Peters, S., Pinto, K.G., Kirschner, G.K., Schmid, J.B., Wink, R.H., Hulsewede, A., Felekyan, S., Seidel, C.A., Simon, R., 2013. Moderation of Arabidopsis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase complexes. Curr. Biol. 23, 362-371.
|
[39] |
Sorefan, K., Girin, T., Liljegren, S.J., Ljung, K., Robles, P., Galvan-Ampudia, C.S., Offringa, R., Friml, J., Yanofsky, M.F., Ostergaard, L., 2009. A regulated auxin minimum is required for seed dispersal in Arabidopsis. Nature 459, 583-586.
|
[40] |
Stahl, Y., Wink, R.H., Ingram, G.C., Simon, R., 2009. A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr. Biol. 19, 909-914.
|
[41] |
Takada, S., Iida, H., 2014. Specification of epidermal cell fate in plant shoots. Front. Plant Sci. 5, 49.
|
[42] |
Tanaka, H., Watanabe, M., Sasabe, M., Hiroe, T., Tanaka, T., Tsukaya, H., Ikezaki, M., Machida, C., Machida, Y., 2007. Novel receptor-like kinase ALE2 controls shoot development by specifying epidermis in Arabidopsis. Development 134, 1643-1652.
|
[43] |
Tanaka, H., Watanabe, M., Watanabe, D., Tanaka, T., Machida, C., Machida, Y., 2002. ACR4, a putative receptor kinase gene of Arabidopsis thaliana, that is expressed in the outer cell layers of embryos and plants, is involved in proper embryogenesis. Plant Cell Physiol.. 43, 419-428.
|
[44] |
van der Graaff, E., Laux, T., Rensing, S.A., 2009. The WUS homeobox-containing (WOX) protein family. Genome Biol. 10, 248.
|
[45] |
Wang, J.R., Hu, H., Wang, G.H., Li, J., Chen, J.Y., Wu, P., 2009. Expression of PIN genes in rice (Oryza sativa L.): tissue specificity and regulation by hormones. Mol. Plant 2, 823-831.
|
[46] |
Wang, D., Pei, K., Fu, Y., Sun, Z., Li, S., Liu, H., Tang, K., Han, B., Tao, Y., 2007. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394, 13-24.
|
[47] |
Watanabe, M., Tanaka, H., Watanabe, D., Machida, C., Machida, Y., 2004. The ACR4 receptor-like kinase is required for surface formation of epidermis-related tissues in Arabidopsis thaliana. Plant J. 39, 298-308.
|
[48] |
Yamamoto, Y., Kamiya, N., Morinaka, Y., Matsuoka, M., Sazuka, T., 2007. Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol.. 143, 1362-1371.
|
[49] |
Yang, Y., Peng, H., Huang, H., Wu, J., Jia, S., Huang, D., Lu, T., 2004. Large-scale production of enhancer trapping lines for rice functional genomics. Plant Sci. 167, 281-288.
|
[50] |
Yasui, Y., Ohmori, Y., Takebayashi, Y., Sakakibara, H., Hirano, H.Y., 2018. WUSCHEL-RELATED HOMEOBOX4 acts as a key regulator in early leaf development in rice. PLoS Genet. 14, e1007365.
|
[51] |
Zhang, H., Wu, K., Wang, Y., Peng, Y., Hu, F., Wen, L., Han, B., Qian, Q., Teng, S., 2012. A WUSCHEL-like homeobox gene, OsWOX3B responses to NUDA/GL-1 locus in rice. Rice 5, 30.
|
[52] |
Zhang, H., Lin, X., Han, Z., Qu, L.J., Chai, J., 2016. Crystal structure of PXY-TDIF complex reveals a conserved recognition mechanism among CLE peptide-receptor pairs. Cell Res. 26, 543-555.
|