5.9
CiteScore
5.9
Impact Factor
Volume 47 Issue 9
Sep.  2020
Turn off MathJax
Article Contents

A critical role of foxp3a-positive regulatory T cells in maintaining immune homeostasis in zebrafish testis development

doi: 10.1016/j.jgg.2020.07.006
More Information
  • Suppressive regulatory T cells (Treg cells) play a vital role in preventing autoimmunity and restraining excessive immune response to both self- and non-self-antigens. Studies on humans and mice show that the Forkhead box p3 (Foxp3) is a key regulatory gene for the development and function of Treg cells. In zebrafish, Treg cells have been identified by using foxp3a as a reliable marker. However, little is known about the function of foxp3a and Treg cells in gonadal development and sex differentiation. Here, we show that foxp3a is essential for maintaining immune homeostasis in zebrafish testis development. We found that foxp3a was specifically expressed in a subset of T cells in zebrafish testis, while knockout of foxp3a led to deficiency of foxp3a-positive Treg cells in the testis. More than 80% of foxp3a mutants developed as subfertile males, and the rest of the mutants developed as fertile females with decreased ovulation. Further study revealed that foxp3a mutants had a delayed juvenile ovary-to-testis transition in definite males and sex reversal in about half of the definite females, which led to a dominance of later male development. Owing to the absence of foxp3a-positive Treg cells in the differentiating testis of foxp3a mutants, abundant T cells and macrophages expand to disrupt an immunosuppressive milieu, resulting in defective development of germ cells and gonadal somatic cells and leading to development of infertile males. Therefore, our study reveals that foxp3a-positive Treg cells play an essential role in the orchestration of gonadal development and sex differentiation in zebrafish.
  • loading
  • [1]
    Baudiffier, D., Hinfray, N., Vosges, M., Creusot, N., Chadili, E., Porcher, J.M., Schulz, R.W., Brion, F., 2012. A critical role of follicle-stimulating hormone (Fsh) in mediating the effect of clotrimazole on testicular steroidogenesis in adult zebrafish. Toxicology 298, 30-39.
    [2]
    Beer, R.L., Draper, B.W., 2013. nanos3 maintains germline stem cells and expression of the conserved germline stem cell gene nanos2 in the zebrafish ovary. Dev. Biol. 374, 308-318.
    [3]
    Bennett, C.L., Christie, J., Ramsdell, F., Brunkow, M.E., Ferguson, P.J., Whitesell, L., Kelly, T.E., Saulsbury, F.T., Chance, P.F., Ochs, H.D., 2001. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20-21.
    [4]
    Brunkow, M.E., Jeffery, E.W., Hjerrild, K.A., Paeper, B., Clark, L.B., Yasayko, S.A., Wilkinson, J.E., Galas, D., Ziegler, S.F., Ramsdell, F., 2001. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68-73.
    [5]
    Burgos-Aceves, M.A., Cohen, A., Smith, Y., Faggio, C., 2016. Estrogen regulation of gene expression in the teleost fish immune system. Fish Shellfish Immunol.. 58, 42-49.
    [6]
    Capel, B., 2017. Vertebrate sex determination: evolutionary plasticity of a fundamental switch. Nat. Rev. Genet. 18, 675-689.
    [7]
    Chang, N., Sun, C., Gao, L., Zhu, D., Xu, X., Zhu, X., Xiong, J.W., Xi, J.J., 2013. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res.. 23, 465-472.
    [8]
    Chomczynski, P., Mackey, K., 1995. Short technical reports. Modification of the TRI reagent procedure for isolation of RNA from polysaccharide- and proteoglycan-rich sources. Biotechniques 19, 942-945.
    [9]
    Dranow, D.B., Hu, K., Bird, A.M., Lawry, S.T., Adams, M.T., Sanchez, A., Amatruda, J.F., Draper, B.W., 2016. Bmp15 is an oocyte-produced signal required for maintenance of the adult female sexual phenotype in zebrafish. PLoS Genet.. 12, e1006323.
    [10]
    Draper, B.W., 2017. Identification of germ-line stem cells in zebrafish. Methods Mol. Biol. 1463, 103-113.
    [11]
    Esche, C., Stellato, C., Beck, L.A., 2005. Chemokines: key players in innate and adaptive immunity. J. Invest. Dermatol. 125, 615-628.
    [12]
    Fontenot, J.D., Gavin, M.A., Rudensky, A.Y., 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330-336.
    [13]
    Glasauer, S.M., Neuhauss, S.C., 2014. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol. Genet. Genom. 289, 1045-1060.
    [14]
    Gordon, S., Pluddemann, A., 2018. Macrophage clearance of apoptotic cells: a critical assessment. Front. Immunol. 9, 127.
    [15]
    Guerriero, J.L., 2019. Chapter three - macrophages: their untold story in T cell activation and function, in: Galluzzi, L., Rudqvist, N.-P. (Eds.), International Review of Cell and Molecular Biology. Academic Press, pp. 73-93.
    [16]
    Hinfray, N., Baudiffier, D., Leal, M.C., Porcher, J.M., Ait-Aissa, S., Le Gac, F., Schulz, R.W., Brion, F., 2011. Characterization of testicular expression of P450 17alpha-hydroxylase, 17,20-lyase in zebrafish and its perturbation by the pharmaceutical fungicide clotrimazole. Gen. Comp. Endocrinol. 174, 309-317.
    [17]
    Hori, S., Nomura, T., Sakaguchi, S., 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057-1061.
    [18]
    Huang, Q., Liu, X., Zhang, Y., Huang, J., Li, D., Li, B., 2020. Molecular feature and therapeutic perspectives of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. J. Genet. Genomics 47, 17-26.
    [19]
    Hubert, F.X., Kinkel, S.A., Crewther, P.E., Cannon, P.Z, Webster, K.E., Link, M., Uibo, R., O’Bryan, M.K., Meager, A., Forehan, S.P., Smyth, G.K., Mittaz, L., Antonarakis, S.E., Peterson, P., Heath, W.R., Scott, H.S., 2009. Aire-deficient C57BL/6 mice mimicking the common human 13-base pair deletion mutation present with only a mild autoimmune phenotype. Journal of immunology 182, 3902–3918.
    [20]
    Hui, S.P., Sheng, D.Z., Sugimoto, K., Gonzalez-Rajal, A., Nakagawa, S., Hesselson, D., Kikuchi, K., 2017. Zebrafish regulatory T cells mediate organ-specific regenerative programs. Dev. Cell 43, 659-672 e655.
    [21]
    Jacobo, P., 2018. The role of regulatory T Cells in autoimmune orchitis. Andrologia 50 (e13092).
    [22]
    Jacobo, P., Guazzone, V.A., Theas, M.S., Lustig, L., 2011. Testicular autoimmunity. Autoimmunity reviews 10, 201–204.
    [23]
    Jasurda, J.S., Jung, D.O., Froeter, E.D., Schwartz, D.B., Hopkins, T.D., Farris, C.L., McGee, S., Narayan, P., Ellsworth, B.S., 2014. The forkhead transcription factor, FOXP3: a critical role in male fertility in mice. Biol. Reprod. 90, 4.
    [24]
    Kasheta, M., Painter, C.A., Moore, F.E., Lobbardi, R., Bryll, A., Freiman, E., Stachura, D., Rogers, A.B., Houvras, Y., Langenau, D.M., Ceol, C.J., 2017. Identification and characterization of T reg-like cells in zebrafish. J. Exp. Med. 214, 3519-3530.
    [25]
    Langenau, D.M., Ferrando, A.A., Traver, D., Kutok, J.L., Hezel, J.P., Kanki, J.P., Zon, L.I., Look, A.T., Trede, N.S., 2004. In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. Proc. Natl. Acad. Sci. U. S. A. 101, 7369-7374.
    [26]
    Lauter, G., Soll, I., Hauptmann, G., 2011. Multicolor fluorescent in situ hybridization to define abutting and overlapping gene expression in the embryonic zebrafish brain. Neural Dev. 6, 10.
    [27]
    Lawrence, T., Gilroy, D.W., 2007. Chronic inflammation: a failure of resolution? Int. J. Exp. Pathol. 88, 85-94.
    [28]
    Liew, W.C., Orban, L., 2014. Zebrafish sex: a complicated affair. Brief Funct Genomics 13, 172-187.
    [29]
    Lin, Q., Mei, J., Li, Z., Zhang, X., Zhou, L., Gui, J.F, 2017. Distinct and Cooperative Roles of amh and dmrt1 in Self-Renewal and Differentiation of Male Germ Cells in Zebrafish. Genetics 207, 1007–1022.
    [30]
    Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402-408.
    [31]
    Matta, S., Vilela, D., Godinho, H., Franca, L., 2002. The goitrogen 6-n-propyl-2-thiouracil (PTU) given during testis development increases Sertoli and germ cell numbers per cyst in fish: the tilapia (Oreochromis niloticus) model. Endocrinology 143, 970-978.
    [32]
    Mitra, S., Alnabulsi, A., Secombes, C.J., Bird, S., 2010. Identification and characterization of the transcription factors involved in T-cell development, t-bet, stat6 and foxp3, within the zebrafish, Danio rerio. FEBS J.. 277, 128-147.
    [33]
    Nathan, C., 2002. Points of control in inflammation. Nature 420, 846-852.
    [34]
    Orban, L., Sreenivasan, R., Olsson, P.E., 2009. Long and winding roads: testis differentiation in zebrafish. Mol. Cell. Endocrinol. 312, 35-41.
    [35]
    Pelletier, R.M., Yoon, S.R., Akpovi, C.D., Silvas, E., Vitale, M.L., 2009. Defects in the regulatory clearance mechanisms favor the breakdown of self-tolerance during spontaneous autoimmune orchitis. American journal of physiology. Regulatory, integrative and comparative physiology 296, R743-762.
    [36]
    Piferrer, F., Anastasiadi, D., Valdivieso, A., Sanchez-Baizan, N., Moraleda-Prados, J., Ribas, L., 2019. The model of the conserved epigenetic regulation of sex. Front. Genet. 10, 857.
    [37]
    Quintana, F.J., Iglesias, A.H., Farez, M.F., Caccamo, M., Burns, E.J., Kassam, N., Oukka, M., Weiner, H.L., 2010. Adaptive autoimmunity and Foxp3-based immunoregulation in zebrafish. PloS One 5, e9478.
    [38]
    Rodriguez-Mari, A., Canestro, C., BreMiller, R.A., Nguyen-Johnson, A., Asakawa, K., Kawakami, K., Postlethwait, J.H., 2010. Sex reversal in zebrafish fancl mutants is caused by Tp53-mediated germ cell apoptosis. PLoS Genet.. 6, e1001034.
    [39]
    Rodriguez-Mari, A., Yan, Y.L., Bremiller, R.A., Wilson, C., Canestro, C., Postlethwait, J.H., 2005. Characterization and expression pattern of zebrafish anti-Mullerian hormone (Amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development. Gene Expr. Patterns 5, 655-667.
    [40]
    Sawant, D.V., Vignali, D.A., 2014. Once a Treg, always a Treg? Immunol. Rev. 259, 173-191.
    [41]
    Schulz, R.W., de Franca, L.R., Lareyre, J.J., Le Gac, F., Chiarini-Garcia, H., Nobrega, R.H., Miura, T., 2010. Spermatogenesis in fish. Gen. Comp. Endocrinol. 165, 390-411.
    [42]
    Selman, K., Wallace, R.A., Sarka, A., Qi, X., 1993. Stages of oocyte development in the zebrafish, Brachydanio rerio. J. Morphol. 218, 203-224.
    [43]
    Shelley, L.K., Osachoff, H.L., van Aggelen, G.C., Ross, P.S., Kennedy, C.J., 2013. Alteration of immune function endpoints and differential expression of estrogen receptor isoforms in leukocytes from 17β-estradiol exposed rainbow trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol. 180, 24-32.
    [44]
    Suescun, M.O., Rival, C., Theas, M.S., Calandra, R.S., Lustig, L., 2003. Involvement of tumor necrosis factor-alpha in the pathogenesis of autoimmune orchitis in rats. Biol. Reprod. 68, 2114-2121.
    [45]
    Sugimoto, K., Hui, S.P., Sheng, D.Z., Nakayama, M., Kikuchi, K., 2017. Zebrafish FOXP3 is required for the maintenance of immune tolerance. Dev. Comp. Immunol. 73, 156-162.
    [46]
    Tao, S., Wang, L., Zhu, Z., Liu, Y., Wu, L., Yuan, C., Zhang, G., Wang, Z., 2019. Adverse effects of bisphenol A on Sertoli cell blood-testis barrier in rare minnow Gobiocypris rarus. Ecotoxicol. Environ. Saf. 171, 475-483.
    [47]
    Theas, M.S., Rival, C., Jarazo-Dietrich, S., Jacobo, P., Guazzone, V.A., Lustig, L., 2008. Tumour necrosis factor-alpha released by testicular macrophages induces apoptosis of germ cells in autoimmune orchitis. Hum. Reprod. 23, 1865-1872.
    [48]
    Todd, E., Ortega-Recalde, O., Liu, H., Lamm, M., Rutherford, K., Cross, H., Black, M., Kardailsky, O., Graves, J., Hore, T., Godwin, J., Gemmell, N., 2019. Stress, novel sex genes, and epigenetic reprogramming orchestrate socially controlled sex change. Sci. Adv. 5, eaaw7006.
    [49]
    Traut, W., Winking, H., 2001. Meiotic chromosomes and stages of sex chromosome evolution in fish: zebrafish, platyfish and guppy. Chromosome Res. 9, 659-672.
    [50]
    Tung, K.S., Harakal, J., Qiao, H., Rival, C., Li, J.C., Paul, A.G., Wheeler, K., Pramoonjago, P., Grafer, C.M., Sun, W., Sampson, R.D., Wong, E.W., Reddi, P.P., Deshmukh, U.S., Hardy, D.M., Tang, H., Cheng, C.Y., Goldberg, E., 2017. Egress of sperm autoantigen from seminiferous tubules maintains systemic tolerance. J. Clin. Invest. 127, 1046-1060.
    [51]
    Uchida, D., Yamashita, M., Kitano, T., Iguchi, T., 2002. Oocyte apoptosis during the transition from ovary-like tissue to testes during sex differentiation of juvenile zebrafish. J. Exp. Biol. 205, 711-718.
    [52]
    Wang, X.G., Bartfai, R., Sleptsova-Freidrich, I., Orban, L., 2007. The timing and extent of 'juvenile ovary' phase are highly variable during zebrafish testis differentiation. J. Fish Biol. 70, 33-44.
    [53]
    Wen, Y., Fang, W., Xiang, L.X., Pan, R.L., Shao, J.Z., 2011. Identification of Treg-like cells in Tetraodon: insight into the origin of regulatory T subsets during early vertebrate evolution. Cell. Mol. Life Sci. 68, 2615-2626.
    [54]
    Wildin, R.S., Freitas, A., 2005. IPEX and FOXP3: clinical and research perspectives. J. Autoimmun. 25 Suppl., 56-62.
    [55]
    Wilson, C.A., High, S.K., McCluskey, B.M., Amores, A., Yan, Y.L., Titus, T.A., Anderson, J.L., Batzel, P., Carvan, M.J., Schartl, M., Postlethwait, J.H., 2014. Wild sex in zebrafish: loss of the natural sex determinant in domesticated strains. Genetics 198, 1291–1308.
    [56]
    Xia, H., Zhong, C., Wu, X., Chen, J., Tao, B., Xia, X., Shi, M., Zhu, Z., Trudeau, V.L., Hu, W., 2018. Mettl3 mutation disrupts gamete maturation and reduces fertility in zebrafish. Genetics 208, 729-743.
    [57]
    Yan, Y.L., Desvignes, T., Bremiller, R., Wilson, C., Dillon, D., High, S., Draper, B., Buck, C.L., Postlethwait, J., 2017. Gonadal soma controls ovarian follicle proliferation through Gsdf in zebrafish. Dev. Dynam. 246, 925-945.
    [58]
    Ye, D., Wang, X., Wei, C., He, M., Wang, H., Wang, Y., Zhu, Z., Sun, Y., 2019a. Marcksb plays a key role in the secretory pathway of zebrafish Bmp2b. PLoS Genet.. 15, e1008306.
    [59]
    Ye, D., Zhu, L., Zhang, Q., Xiong, F., Wang, H., Wang, X., He, M., Zhu, Z., Sun, Y., 2019b. Abundance of early embryonic primordial germ cells promotes zebrafish female differentiation as revealed by lifetime labeling of germline. Mar. Biotechnol. 21, 217-228.
    [60]
    Zhang, Q., Ye, D., Wang, H., Wang, Y., Hu, W., Sun, Y., 2020. Zebrafish cyp11c1 knockout reveals the roles of 11-ketotestosterone and cortisol in sexual development and reproduction. Endocrinology 161, bqaa048.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures (8)

    Article Metrics

    Article views (87) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return