[1] |
Al-Qusairi, L., Laporte, J., 2011. T-tubule biogenesis and triad formation in skeletal muscle and implication in human diseases. Skelet. Muscle 1, 26.
|
[2] |
Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J., Li, W.W., Noble, W.S., 2009. Meme suite: tools for motif discovery and searching. Nucleic Acids Res.. 37, W202-W208.
|
[3] |
Bharathy, N., Ling, B.M., Taneja, R., 2013. Epigenetic regulation of skeletal muscle development and differentiation. Subcell. Biochem.. 61, 139-150.
|
[4] |
Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120.
|
[5] |
Buckingham, M., 2001. Skeletal muscle formation in vertebrates. Curr. Opin. Genet. Dev. 11, 440-448.
|
[6] |
Carrio, E., Suelves, M., 2015. DNA methylation dynamics in muscle development and disease. Front. Aging Neurosci. 7, 19.
|
[7] |
Chen, J.N., Chen, Y., Wei, Y.Y., Raza, M.A., Zou, Q., Xi, X.Y., Zhu, L., Tang, G.Q., Jiang, Y.Z., Li, X.W., 2019. Regulation of m6A RNA methylation and its effect on myogenic differentiation in murine myoblasts. Mol. Biol. 53, 384-392.
|
[8] |
Chen, X., He, L., Zhao, Y., Li, Y., Zhang, S., Sun, K., So, K., Chen, F., Zhou, L., Lu, L., Wang, L., Zhu, X., Bao, X., Esteban, M.A., Nakagawa, S., Prasanth, K.V., Wu, Z., Sun, H., Wang, H., 2017. Malat1 regulates myogenic differentiation and muscle regeneration through modulating MyoD transcriptional activity. Cell Discov.. 3, 17002.
|
[9] |
Davie, J.K., Cho, J.H., Meadows, E., Flynn, J.M., Knapp, J.R., Klein, W.H., 2007. Target gene selectivity of the myogenic basic helix-loop-helix transcription factor myogenin in embryonic muscle. Dev. Biol. 311, 650-664.
|
[10] |
Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M., Sorek, R., Rechavi, G., 2012. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201-206.
|
[11] |
He, S., Wang, H., Liu, R., He, M., Che, T., Jin, L., Deng, L., Tian, S., Li, Y., Lu, H., Li, X., Jiang, Z., Li, D., Li, M., 2017. mRNA N6-methyladenosine methylation of postnatal liver development in pig. PloS One 12, e0173421.
|
[12] |
Huang, H., Weng, H., Sun, W., Qin, X., Shi, H., Wu, H., Zhao, B.S., Mesquita, A., Liu, C., Yuan, C.L., Hu, Y.-C., Huttelmaier, S., Skibbe, J.R., Su, R., Deng, X., Dong, L., Sun, M., Li, C., Nachtergaele, S., Wang, Y., Hu, C., Ferchen, K., Greis, K.D., Jiang, X., Wei, M., Qu, L., Guan, J.-L., He, C., Yang, J., Chen, J., 2018. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20, 285-295.
|
[13] |
Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., Yi, C., Lindahl, T., Pan, T., Yang, Y.G., He, C., 2011. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885-887.
|
[14] |
Jin, J.J., Lv, W., Xia, P., Xu, Z.Y., Zheng, A.D., Wang, X.J., Wang, S.S., Zeng, R., Luo, H.M., Li, G.L., Zuo, B., 2018. Long noncoding RNA SYISL regulates myogenesis by interacting with polycomb repressive complex 2. Proc. Natl. Acad. Sci. U. S. A. 115, E9802-e9811.
|
[15] |
Kim, D., Langmead, B., Salzberg, S.L., 2015. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357-360.
|
[16] |
Kudou, K., Komatsu, T., Nogami, J., Maehara, K., Harada, A., Saeki, H., Oki, E., Maehara, Y., Ohkawa, Y., 2017. The requirement of Mettl3-promoted MyoD mRNA maintenance in proliferative myoblasts for skeletal muscle differentiation. Open Biol.., 7.
|
[17] |
Langfelder, P., Horvath, S., 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 9, 559.
|
[18] |
Li, M., Zhao, X., Wang, W., Shi, H., Pan, Q., Lu, Z., Perez, S.P., Suganthan, R., He, C., Bjoras, M., Klungland, A., 2018. Ythdf2-mediated m(6)A mRNA clearance modulates neural development in mice. Genome Biol.. 19, 69.
|
[19] |
Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., Jia, G., Yu, M., Lu, Z., Deng, X., Dai, Q., Chen, W., He, C., 2014. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93-95.
|
[20] |
Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.
|
[21] |
Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.. 15, 550.
|
[22] |
Luo, W., Brouwer, C., 2013. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 29, 1830-1831.
|
[23] |
Ma, C., Chang, M., Lv, H., Zhang, Z.W., Zhang, W., He, X., Wu, G., Zhao, S., Zhang, Y., Wang, D., Teng, X., Liu, C., Li, Q., Klungland, A., Niu, Y., Song, S., Tong, W.M., 2018. RNA m(6)A methylation participates in regulation of postnatal development of the mouse cerebellum. Genome Biol.. 19, 68.
|
[24] |
Mascarello, F., Toniolo, L., Cancellara, P., Reggiani, C., Maccatrozzo, L., 2016. Expression and identification of 10 sarcomeric MyHC isoforms in human skeletal muscles of different embryological origin. Diversity and similarity in mammalian species. Ann. Anat. 207, 9-20.
|
[25] |
Meadows, E., Cho, J.H., Flynn, J.M., Klein, W.H., 2008. Myogenin regulates a distinct genetic program in adult muscle stem cells. Dev. Biol. 322, 406-414.
|
[26] |
Meng, J., Cui, X., Rao, M.K., Chen, Y., Huang, Y., 2013. Exome-based analysis for RNA epigenome sequencing data. Bioinformatics 29, 1565-1567.
|
[27] |
Meng, J., Lu, Z., Liu, H., Zhang, L., Zhang, S., Chen, Y., Rao, M.K., Huang, Y., 2014. A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package. Methods 69, 274-281.
|
[28] |
Meyer, K.D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C.E., Jaffrey, S.R., 2012. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 149, 1635-1646.
|
[29] |
Pas, M.F.W.T., Wit, A.A.W.D., Priem, J., Cagnazzo, M., Davoli, R., Russo, V., Pool, M.H., 2005. Transcriptome expression profiles in prenatal pigs in relation to myogenesis. J. Muscle Res. Cell Motil. 26, 157-165.
|
[30] |
Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., Kingsford, C., 2017. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417-419.
|
[31] |
Ping, X.L., Sun, B.F., Wang, L., Xiao, W., Yang, X., Wang, W.J., Adhikari, S., Shi, Y., Lv, Y., Chen, Y.S., Zhao, X., Li, A., Yang, Y., Dahal, U., Lou, X.M., Liu, X., Huang, J., Yuan, W.P., Zhu, X.F., Cheng, T., Zhao, Y.L., Wang, X., Rendtlew Danielsen, J.M., Liu, F., Yang, Y.G., 2014. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res.. 24, 177-189.
|
[32] |
Ponsuksili, S., Siengdee, P., Du, Y., Trakooljul, N., Murani, E., Schwerin, M., Wimmers, K., 2015. Identification of common regulators of genes in co-expression networks affecting muscle and meat properties. PloS One 10, e0123678.
|
[33] |
Rudnicki, M.A., Jaenisch, R., 1995. The MyoD family of transcription factors and skeletal myogenesis. Bioessays 17, 203-209.
|
[34] |
Schook, L., Beattie, C., Beever, J., Donovan, S., Jamison, R., Zuckermann, F., Niemi, S., Rothschild, M., Rutherford, M., Smith, D., 2005. Swine in biomedical research: creating the building blocks of animal models. Anim. Biotechnol. 16, 183-190.
|
[35] |
Tang, Z., Li, Y., Wan, P., Li, X., Zhao, S., Liu, B., Fan, B., Zhu, M., Yu, M., Li, K., 2007. LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs. Genome Biol.. 8, R115.
|
[36] |
Tang, Z., Yang, Y., Wang, Z., Zhao, S., Mu, Y., Li, K., 2015. Integrated analysis of miRNA and mRNA paired expression profiling of prenatal skeletal muscle development in three genotype pigs. Sci. Rep. 5, 15544.
|
[37] |
Tao, X., Chen, J., Jiang, Y., Wei, Y., Chen, Y., Xu, H., Zhu, L., Tang, G., Li, M., Jiang, A., Shuai, S., Bai, L., Liu, H., Ma, J., Jin, L., Wen, A., Wang, Q., Zhu, G., Xie, M., Wu, J., He, T., Huang, C., Gao, X., Li, X., 2017. Transcriptome-wide N 6 -methyladenosine methylome profiling of porcine muscle and adipose tissues reveals a potential mechanism for transcriptional regulation and differential methylation pattern. BMC Genom. 18, 336.
|
[38] |
Tapscott, S.J., 2005. The circuitry of a master switch: myod and the regulation of skeletal muscle gene transcription. Development (Cambridge, England) 132, 2685-2695.
|
[39] |
Wannenes, F., Caprio, M., Gatta, L., Fabbri, A., Bonini, S., Moretti, C., 2008. Androgen receptor expression during C2C12 skeletal muscle cell line differentiation. Mol. Cell. Endocrinol. 292, 11-19.
|
[40] |
Weintraub, H., Davis, R., Tapscott, S., Thayer, M., Krause, M., Benezra, R., Blackwell, T.K., Turner, D., Rupp, R., Hollenberg, S., 1991. The myoD gene family: nodal point during specification of the muscle cell lineage. Science (New York, N.Y.) 251, 761-766.
|
[41] |
Wigmore, P.M., Strickland, N.C., 1983. DNA, RNA and protein in skeletal muscle of large and small pig fetuses. Growth 47, 67-76.
|
[42] |
Zeng, Y., Wang, S., Gao, S., Soares, F., Ahmed, M., Guo, H., Wang, M., Hua, J.T., Guan, J., Moran, M.F., Tsao, M.S., He, H.H., 2018. Refined RIP-seq protocol for epitranscriptome analysis with low input materials. PLoS Biol.. 16, e2006092.
|
[43] |
Zhang, W., Tong, H., Zhang, Z., Shao, S., Liu, D., Li, S., Yan, Y., 2018. Transcription factor EGR1 promotes differentiation of bovine skeletal muscle satellite cells by regulating MyoG gene expression. J. Cell. Physiol. 233, 350-362.
|
[44] |
Zhao, X., Mo, D., Li, A., Gong, W., Xiao, S., Zhang, Y., Qin, L., Niu, Y., Guo, Y., Liu, X., Cong, P., He, Z., Wang, C., Li, J., Chen, Y., 2011. Comparative analyses by sequencing of transcriptomes during skeletal muscle development between pig breeds differing in muscle growth rate and fatness. PloS One 6, e19774.
|
[45] |
Zhao, X., Yang, Y., Sun, B.F., Shi, Y., Yang, X., Xiao, W., Hao, Y.J., Ping, X.L., Chen, Y.S., Wang, W.J., Jin, K.X., Wang, X., Huang, C.M., Fu, Y., Ge, X.M., Song, S.H., Jeong, H.S., Yanagisawa, H., Niu, Y., Jia, G.F., Wu, W., Tong, W.M., Okamoto, A., He, C., Rendtlew Danielsen, J.M., Wang, X.J., Yang, Y.G., 2014. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res.. 24, 1403-1419.
|