5.9
CiteScore
5.9
Impact Factor
Volume 47 Issue 8
Aug.  2020
Turn off MathJax
Article Contents

Longitudinal epitranscriptome profiling reveals the crucial role of N6-methyladenosine methylation in porcine prenatal skeletal muscle development

doi: 10.1016/j.jgg.2020.07.003
More Information
  • N6-methyladenosine (m6A) represents the most abundantly occurring mRNA modification and is involved in the regulation of skeletal muscle development. However, the status and function of m6A methylation in prenatal myogenesis remains unclear. In this study, we first demonstrated that knockdown of METTL14, an m6A methyltransferase, inhibited the differentiation and promoted the proliferation of C2C12 myoblast cells. Then, using a refined m6A-specific methylated RNA immunoprecipitation (RIP) with next generation sequencing (MeRIP-seq) method that is optimal for use with samples containing small amounts of RNA, we performed transcriptome-wide m6A profiling for six prenatal skeletal muscle developmental stages spanning two important waves of porcine myogenesis. The results revealed that, along with a continuous decrease in the mRNA expression of the m6A reader protein insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), the m6A methylome underwent highly dynamic changes across different development stages, with most of the affected genes being enriched in pathways related to skeletal muscle development. RNA immunoprecipitation confirmed that IGF2BP1 targets 76 genes involved in pathways associated with muscle development, including the key marker genes MYH2 and MyoG. Moreover, small interfering RNA (siRNA)-mediated knockdown of IGF2BP1 induced phenotypic changes in C2C12 myoblasts similar to those observed with knockdown of METTL14. In conclusion, we clarified the dynamics of m6A methylation and identified key genes involved in the regulatory network of porcine skeletal muscle development.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Al-Qusairi, L., Laporte, J., 2011. T-tubule biogenesis and triad formation in skeletal muscle and implication in human diseases. Skelet. Muscle 1, 26.
    [2]
    Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J., Li, W.W., Noble, W.S., 2009. Meme suite: tools for motif discovery and searching. Nucleic Acids Res.. 37, W202-W208.
    [3]
    Bharathy, N., Ling, B.M., Taneja, R., 2013. Epigenetic regulation of skeletal muscle development and differentiation. Subcell. Biochem.. 61, 139-150.
    [4]
    Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120.
    [5]
    Buckingham, M., 2001. Skeletal muscle formation in vertebrates. Curr. Opin. Genet. Dev. 11, 440-448.
    [6]
    Carrio, E., Suelves, M., 2015. DNA methylation dynamics in muscle development and disease. Front. Aging Neurosci. 7, 19.
    [7]
    Chen, J.N., Chen, Y., Wei, Y.Y., Raza, M.A., Zou, Q., Xi, X.Y., Zhu, L., Tang, G.Q., Jiang, Y.Z., Li, X.W., 2019. Regulation of m6A RNA methylation and its effect on myogenic differentiation in murine myoblasts. Mol. Biol. 53, 384-392.
    [8]
    Chen, X., He, L., Zhao, Y., Li, Y., Zhang, S., Sun, K., So, K., Chen, F., Zhou, L., Lu, L., Wang, L., Zhu, X., Bao, X., Esteban, M.A., Nakagawa, S., Prasanth, K.V., Wu, Z., Sun, H., Wang, H., 2017. Malat1 regulates myogenic differentiation and muscle regeneration through modulating MyoD transcriptional activity. Cell Discov.. 3, 17002.
    [9]
    Davie, J.K., Cho, J.H., Meadows, E., Flynn, J.M., Knapp, J.R., Klein, W.H., 2007. Target gene selectivity of the myogenic basic helix-loop-helix transcription factor myogenin in embryonic muscle. Dev. Biol. 311, 650-664.
    [10]
    Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M., Sorek, R., Rechavi, G., 2012. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201-206.
    [11]
    He, S., Wang, H., Liu, R., He, M., Che, T., Jin, L., Deng, L., Tian, S., Li, Y., Lu, H., Li, X., Jiang, Z., Li, D., Li, M., 2017. mRNA N6-methyladenosine methylation of postnatal liver development in pig. PloS One 12, e0173421.
    [12]
    Huang, H., Weng, H., Sun, W., Qin, X., Shi, H., Wu, H., Zhao, B.S., Mesquita, A., Liu, C., Yuan, C.L., Hu, Y.-C., Huttelmaier, S., Skibbe, J.R., Su, R., Deng, X., Dong, L., Sun, M., Li, C., Nachtergaele, S., Wang, Y., Hu, C., Ferchen, K., Greis, K.D., Jiang, X., Wei, M., Qu, L., Guan, J.-L., He, C., Yang, J., Chen, J., 2018. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20, 285-295.
    [13]
    Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., Yi, C., Lindahl, T., Pan, T., Yang, Y.G., He, C., 2011. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885-887.
    [14]
    Jin, J.J., Lv, W., Xia, P., Xu, Z.Y., Zheng, A.D., Wang, X.J., Wang, S.S., Zeng, R., Luo, H.M., Li, G.L., Zuo, B., 2018. Long noncoding RNA SYISL regulates myogenesis by interacting with polycomb repressive complex 2. Proc. Natl. Acad. Sci. U. S. A. 115, E9802-e9811.
    [15]
    Kim, D., Langmead, B., Salzberg, S.L., 2015. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357-360.
    [16]
    Kudou, K., Komatsu, T., Nogami, J., Maehara, K., Harada, A., Saeki, H., Oki, E., Maehara, Y., Ohkawa, Y., 2017. The requirement of Mettl3-promoted MyoD mRNA maintenance in proliferative myoblasts for skeletal muscle differentiation. Open Biol.., 7.
    [17]
    Langfelder, P., Horvath, S., 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 9, 559.
    [18]
    Li, M., Zhao, X., Wang, W., Shi, H., Pan, Q., Lu, Z., Perez, S.P., Suganthan, R., He, C., Bjoras, M., Klungland, A., 2018. Ythdf2-mediated m(6)A mRNA clearance modulates neural development in mice. Genome Biol.. 19, 69.
    [19]
    Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., Jia, G., Yu, M., Lu, Z., Deng, X., Dai, Q., Chen, W., He, C., 2014. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93-95.
    [20]
    Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.
    [21]
    Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.. 15, 550.
    [22]
    Luo, W., Brouwer, C., 2013. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 29, 1830-1831.
    [23]
    Ma, C., Chang, M., Lv, H., Zhang, Z.W., Zhang, W., He, X., Wu, G., Zhao, S., Zhang, Y., Wang, D., Teng, X., Liu, C., Li, Q., Klungland, A., Niu, Y., Song, S., Tong, W.M., 2018. RNA m(6)A methylation participates in regulation of postnatal development of the mouse cerebellum. Genome Biol.. 19, 68.
    [24]
    Mascarello, F., Toniolo, L., Cancellara, P., Reggiani, C., Maccatrozzo, L., 2016. Expression and identification of 10 sarcomeric MyHC isoforms in human skeletal muscles of different embryological origin. Diversity and similarity in mammalian species. Ann. Anat. 207, 9-20.
    [25]
    Meadows, E., Cho, J.H., Flynn, J.M., Klein, W.H., 2008. Myogenin regulates a distinct genetic program in adult muscle stem cells. Dev. Biol. 322, 406-414.
    [26]
    Meng, J., Cui, X., Rao, M.K., Chen, Y., Huang, Y., 2013. Exome-based analysis for RNA epigenome sequencing data. Bioinformatics 29, 1565-1567.
    [27]
    Meng, J., Lu, Z., Liu, H., Zhang, L., Zhang, S., Chen, Y., Rao, M.K., Huang, Y., 2014. A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package. Methods 69, 274-281.
    [28]
    Meyer, K.D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C.E., Jaffrey, S.R., 2012. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 149, 1635-1646.
    [29]
    Pas, M.F.W.T., Wit, A.A.W.D., Priem, J., Cagnazzo, M., Davoli, R., Russo, V., Pool, M.H., 2005. Transcriptome expression profiles in prenatal pigs in relation to myogenesis. J. Muscle Res. Cell Motil. 26, 157-165.
    [30]
    Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., Kingsford, C., 2017. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417-419.
    [31]
    Ping, X.L., Sun, B.F., Wang, L., Xiao, W., Yang, X., Wang, W.J., Adhikari, S., Shi, Y., Lv, Y., Chen, Y.S., Zhao, X., Li, A., Yang, Y., Dahal, U., Lou, X.M., Liu, X., Huang, J., Yuan, W.P., Zhu, X.F., Cheng, T., Zhao, Y.L., Wang, X., Rendtlew Danielsen, J.M., Liu, F., Yang, Y.G., 2014. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res.. 24, 177-189.
    [32]
    Ponsuksili, S., Siengdee, P., Du, Y., Trakooljul, N., Murani, E., Schwerin, M., Wimmers, K., 2015. Identification of common regulators of genes in co-expression networks affecting muscle and meat properties. PloS One 10, e0123678.
    [33]
    Rudnicki, M.A., Jaenisch, R., 1995. The MyoD family of transcription factors and skeletal myogenesis. Bioessays 17, 203-209.
    [34]
    Schook, L., Beattie, C., Beever, J., Donovan, S., Jamison, R., Zuckermann, F., Niemi, S., Rothschild, M., Rutherford, M., Smith, D., 2005. Swine in biomedical research: creating the building blocks of animal models. Anim. Biotechnol. 16, 183-190.
    [35]
    Tang, Z., Li, Y., Wan, P., Li, X., Zhao, S., Liu, B., Fan, B., Zhu, M., Yu, M., Li, K., 2007. LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs. Genome Biol.. 8, R115.
    [36]
    Tang, Z., Yang, Y., Wang, Z., Zhao, S., Mu, Y., Li, K., 2015. Integrated analysis of miRNA and mRNA paired expression profiling of prenatal skeletal muscle development in three genotype pigs. Sci. Rep. 5, 15544.
    [37]
    Tao, X., Chen, J., Jiang, Y., Wei, Y., Chen, Y., Xu, H., Zhu, L., Tang, G., Li, M., Jiang, A., Shuai, S., Bai, L., Liu, H., Ma, J., Jin, L., Wen, A., Wang, Q., Zhu, G., Xie, M., Wu, J., He, T., Huang, C., Gao, X., Li, X., 2017. Transcriptome-wide N 6 -methyladenosine methylome profiling of porcine muscle and adipose tissues reveals a potential mechanism for transcriptional regulation and differential methylation pattern. BMC Genom. 18, 336.
    [38]
    Tapscott, S.J., 2005. The circuitry of a master switch: myod and the regulation of skeletal muscle gene transcription. Development (Cambridge, England) 132, 2685-2695.
    [39]
    Wannenes, F., Caprio, M., Gatta, L., Fabbri, A., Bonini, S., Moretti, C., 2008. Androgen receptor expression during C2C12 skeletal muscle cell line differentiation. Mol. Cell. Endocrinol. 292, 11-19.
    [40]
    Weintraub, H., Davis, R., Tapscott, S., Thayer, M., Krause, M., Benezra, R., Blackwell, T.K., Turner, D., Rupp, R., Hollenberg, S., 1991. The myoD gene family: nodal point during specification of the muscle cell lineage. Science (New York, N.Y.) 251, 761-766.
    [41]
    Wigmore, P.M., Strickland, N.C., 1983. DNA, RNA and protein in skeletal muscle of large and small pig fetuses. Growth 47, 67-76.
    [42]
    Zeng, Y., Wang, S., Gao, S., Soares, F., Ahmed, M., Guo, H., Wang, M., Hua, J.T., Guan, J., Moran, M.F., Tsao, M.S., He, H.H., 2018. Refined RIP-seq protocol for epitranscriptome analysis with low input materials. PLoS Biol.. 16, e2006092.
    [43]
    Zhang, W., Tong, H., Zhang, Z., Shao, S., Liu, D., Li, S., Yan, Y., 2018. Transcription factor EGR1 promotes differentiation of bovine skeletal muscle satellite cells by regulating MyoG gene expression. J. Cell. Physiol. 233, 350-362.
    [44]
    Zhao, X., Mo, D., Li, A., Gong, W., Xiao, S., Zhang, Y., Qin, L., Niu, Y., Guo, Y., Liu, X., Cong, P., He, Z., Wang, C., Li, J., Chen, Y., 2011. Comparative analyses by sequencing of transcriptomes during skeletal muscle development between pig breeds differing in muscle growth rate and fatness. PloS One 6, e19774.
    [45]
    Zhao, X., Yang, Y., Sun, B.F., Shi, Y., Yang, X., Xiao, W., Hao, Y.J., Ping, X.L., Chen, Y.S., Wang, W.J., Jin, K.X., Wang, X., Huang, C.M., Fu, Y., Ge, X.M., Song, S.H., Jeong, H.S., Yanagisawa, H., Niu, Y., Jia, G.F., Wu, W., Tong, W.M., Okamoto, A., He, C., Rendtlew Danielsen, J.M., Wang, X.J., Yang, Y.G., 2014. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res.. 24, 1403-1419.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures (7)

    Article Metrics

    Article views (106) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return