[1] |
Armanios, M., and Blackburn, E.H. 2012. The telomere syndromes. Nature reviews Genetics 13, 693-704.
|
[2] |
Backhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A., and Gordon, J.I. 2005. Host-bacterial mutualism in the human intestine. Science 307, 1915-1920.
|
[3] |
Barker, N., and Clevers, H. 2010. Lineage tracing in the intestinal epithelium. Current protocols in stem cell biology Chapter 5, Unit5A 4.
|
[4] |
Barker, N., van de Wetering, M., and Clevers, H. 2008. The intestinal stem cell. Genes & development 22, 1856-1864
|
[5] |
Barker, N., van Es, J.H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., Haegebarth, A., Korving, J., Begthel, H., Peters, P.J., et al. 2007. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003-1007.
|
[6] |
Basak, O., Beumer, J., Wiebrands, K., Seno, H., van Oudenaarden, A., and Clevers, H. 2017. Induced Quiescence of Lgr5+ Stem Cells in Intestinal Organoids Enables Differentiation of Hormone-Producing Enteroendocrine Cells. Cell stem cell 20, 177-190.
|
[7] |
Ben-David, U., Ha, G., Tseng, Y.Y., Greenwald, N.F., Oh, C., Shih, J., McFarland, J.M., Wong, B., Boehm, J.S., Beroukhim, R., et al. 2017. Patient-derived xenografts undergo mouse-specific tumor evolution. Nature genetics 49, 1567-1575.
|
[8] |
Ben-David, U., Siranosian, B., Ha, G., Tang, H., Oren, Y., Hinohara, K., Strathdee, C.A., Dempster, J., Lyons, N.J., Burns, R., et al. 2018. Genetic and transcriptional evolution alters cancer cell line drug response. Nature 560, 325-330.
|
[9] |
Bigorgne, A.E., Farin, H.F., Lemoine, R., Mahlaoui, N., Lambert, N., Gil, M., Schulz, A., Philippet, P., Schlesser, P., Abrahamsen, T.G., et al. 2014. TTC7A mutations disrupt intestinal epithelial apicobasal polarity. The Journal of clinical investigation 124, 328-337.
|
[10] |
Biton, M., Haber, A.L., Rogel, N., Burgin, G., Beyaz, S., Schnell, A., Ashenberg, O., Su, C.W., Smillie, C., Shekhar, K., et al. 2018. T Helper Cell Cytokines Modulate Intestinal Stem Cell Renewal and Differentiation. Cell 175, 1307-1320 e1322.
|
[11] |
Burger, K.S., and Berner, L.A. 2014. A functional neuroimaging review of obesity, appetitive hormones and ingestive behavior. Physiology & behavior 136, 121-127.
|
[12] |
Burkitt, M.D., Duckworth, C.A., Williams, J.M., and Pritchard, D.M. 2017. Helicobacter pylori-induced gastric pathology: insights from in vivo and ex vivo models. Dis Model Mech 10, 89-104.
|
[13] |
Muzny, D.M., Bainbridge, M.N., Chang, K., Dinh, H.H., Drummond, J.A., Fowler, G., Kovar, C.L., Lewis, L.R., Morgan, M.B., Newsham, I.F., et al. 2012. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330-337.
|
[14] |
Caron, T.J., Scott, K.E., Fox, J.G., and Hagen, S.J. 2015. Tight junction disruption: Helicobacter pylori and dysregulation of the gastric mucosal barrier. World J Gastroentero 21, 11411-11427.
|
[15] |
Casteleyn, C., Rekecki, A., Van der Aa, A., Simoens, P., and Van den Broeck, W. 2010. Surface area assessment of the murine intestinal tract as a prerequisite for oral dose translation from mouse to man. Lab Anim-Uk 44, 176-183.
|
[16] |
Chandra, R., and Liddle, R.A. 2007. Cholecystokinin. Current opinion in endocrinology, diabetes, and obesity 14, 63-67.
|
[17] |
Cheng, H., and Leblond, C.P. 1974. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. The American journal of anatomy 141, 537-561.
|
[18] |
Chen, R., Giliani, S., Lanzi, G., Mias, G.I., Lonardi, S., Dobbs, K., Manis, J., Im, H., Gallagher, J.E., Phanstiel, D.H., et al. 2013. Whole-exome sequencing identifies tetratricopeptide repeat domain 7A TTC7A mutations for combined immunodeficiency with intestinal atresias. The Journal of allergy and clinical immunology 132, 656-664 e617.
|
[19] |
Cheng, S.H., Gregory, R.J., Marshall, J., Paul, S., Souza, D.W., White, G.A., O'Riordan, C.R., and Smith, A.E. 1990. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63, 827-834.
|
[20] |
Cunliffe, R.N., Rose, F.R.A.J., Keyte, J., Abberley, L., Chan, W.C., and Mahida, Y.R. 2001. Human defensin 5 is stored in precursor form in normal Paneth cells and is expressed by some villous epithelial cells and by metaplastic Paneth cells in the colon in inflammatory bowel disease. Gut 48, 176-185.
|
[21] |
Daniel, V.C., Marchionni, L., Hierman, J.S., Rhodes, J.T., Devereux, W.L., Rudin, C.M., Yung, R., Parmigiani, G., Dorsch, M., Peacock, C.D., et al. 2009. A Primary Xenograft Model of Small-Cell Lung Cancer Reveals Irreversible Changes in Gene Expression Imposed by Culture In vitro. Cancer Res 69, 3364-3373.
|
[22] |
Dekkers, J.F., Wiegerinck, C.L., de Jonge, H.R., Bronsveld, I., Janssens, H.M., de Winter-de Groot, K.M., Brandsma, A.M., de Jong, N.W., Bijvelds, M.J., Scholte, B.J., et al. 2013. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med 19, 939-945.
|
[23] |
Dotti, I., Mora-Buch, R., Ferrer-Picon, E., Planell, N., Jung, P., Masamunt, M.C., Leal, R.F., Martin de Carpi, J., Llach, J., Ordas, I., et al. 2017. Alterations in the epithelial stem cell compartment could contribute to permanent changes in the mucosa of patients with ulcerative colitis. Gut 66, 2069-2079.
|
[24] |
Drost, J., van Jaarsveld, R.H., Ponsioen, B., Zimberlin, C., van Boxtel, R., Buijs, A., Sachs, N., Overmeer, R.M., Offerhaus, G.J., Begthel, H., et al. 2015. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43-U329.
|
[25] |
Elborn, J.S. 2016. Cystic fibrosis. Lancet 388, 2519-2531.
|
[26] |
Evans, G.S., Flint, N., Somers, A.S., Eyden, B., and Potten, C.S. 1992. The development of a method for the preparation of rat intestinal epithelial cell primary cultures. Journal of cell science 101 Pt 1, 219-231.
|
[27] |
Fernandez Garcia, M.S., and Teruya-Feldstein, J. 2014. The diagnosis and treatment of dyskeratosis congenita: a review. Journal of blood medicine 5, 157-167.
|
[28] |
Flume, P.A., Liou, T.G., Borowitz, D.S., Li, H.H., Yen, K., Ordonez, C.L., Geller, D.E., and Grp, V.-.-S. 2012. Ivacaftor in Subjects With Cystic Fibrosis Who Are Homozygous for the F508del-CFTR Mutation. Chest 142, 718-724.
|
[29] |
Freedman, L.P., Cockburn, I.M., and Simcoe, T.S. 2015. The Economics of Reproducibility in Preclinical Research. PLoS biology 13.
|
[30] |
Fujii, M., Matano, M., Nanki, K., and Sato, T. 2015. Efficient genetic engineering of human intestinal organoids using electroporation. Nature protocols 10, 1474-1485.
|
[31] |
Fujii, M., Shimokawa, M., Date, S., Takano, A., Matano, M., Nanki, K., Ohta, Y., Toshimitsu, K., Nakazato, Y., Kawasaki, K., et al. 2016. A Colorectal Tumor Organoid Library Demonstrates Progressive Loss of Niche Factor Requirements during Tumorigenesis. Cell stem cell 18, 827-838.
|
[32] |
Fukamachi, H. 1992. Proliferation and differentiation of fetal rat intestinal epithelial cells in primary serum-free culture. Journal of cell science 103 Pt 2, 511-519.
|
[33] |
Gehart, H., and Clevers, H. 2019. Tales from the crypt: new insights into intestinal stem cells. Nature reviews Gastroenterology & hepatology 16, 19-34.
|
[34] |
Gehart, H., van Es, J.H., Hamer, K., Beumer, J., Kretzschmar, K., Dekkers, J.F., Rios, A., and Clevers, H. 2019. Identification of Enteroendocrine Regulators by Real-Time Single-Cell Differentiation Mapping. Cell 176, 1158-1173 e1116.
|
[35] |
Gerbe, F., Sidot, E., Smyth, D.J., Ohmoto, M., Matsumoto, I., Dardalhon, V., Cesses, P., Garnier, L., Pouzolles, M., Brulin, B., et al. 2016. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529, 226-230.
|
[36] |
Gershon, M.D., and Tack, J. 2007. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132, 397-414.
|
[37] |
Gregorieff, A., Pinto, D., Begthel, H., Destree, O., Kielman, M., and Clevers, H. 2005. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 129, 626-638.
|
[38] |
Gribble, F.M., and Reimann, F. 2019. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nature reviews Endocrinology 15, 226-237.
|
[39] |
Gunawardene, A.R., Corfe, B.M., and Staton, C.A. 2011. Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. International journal of experimental pathology 92, 219-231.
|
[40] |
Huch, M., and Clevers, H. 2011. Sox9 marks adult organ progenitors. Nature genetics 43, 9-10.
|
[41] |
Jeon, M.K., Klaus, C., Kaemmerer, E., and Gassler, N. 2013. Intestinal barrier: Molecular pathways and modifiers. World journal of gastrointestinal pathophysiology 4, 94-99.
|
[42] |
Johansson, M.E., Larsson, J.M., and Hansson, G.C. 2011. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proceedings of the National Academy of Sciences of the United States of America 108 Suppl 1, 4659-4665.
|
[43] |
Jung, J., Seol, H.S., and Chang, S. 2018. The Generation and Application of Patient-Derived Xenograft Model for Cancer Research. Cancer research and treatment : official journal of Korean Cancer Association 50, 1-10.
|
[44] |
Kerbel, R.S. 1998. What is the optimal rodent model for anti-tumor drug testing? Cancer Metast Rev 17, 301-304.
|
[45] |
Kieffer, T.J. 2004. Gastro-intestinal hormones GIP and GLP-1. Annales d'endocrinologie 65, 13-21.
|
[46] |
Kim, T.H., Li, F., Ferreiro-Neira, I., Ho, L.L., Luyten, A., Nalapareddy, K., Long, H., Verzi, M., and Shivdasani, R.A. 2014. Broadly permissive intestinal chromatin underlies lateral inhibition and cell plasticity. Nature 506, 511-515.
|
[47] |
Kobayashi, K.S., Chamaillard, M., Ogura, Y., Henegariu, O., Inohara, N., Nunez, G., and Flavell, R.A. 2005. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731-734.
|
[48] |
Koo, B.K., Stange, D.E., Sato, T., Karthaus, W., Farin, H.F., Huch, M., van Es, J.H., and Clevers, H. 2012. Controlled gene expression in primary Lgr5 organoid cultures. Nat Methods 9, 81-U197.
|
[49] |
Lai, Y., Wei, X., Lin, S., Qin, L., Cheng, L., and Li, P. 2017. Current status and perspectives of patient-derived xenograft models in cancer research. Journal of hematology & oncology 10, 106.
|
[50] |
Leslie, J.L., Huang, S., Opp, J.S., Nagy, M.S., Kobayashi, M., Young, V.B., and Spence, J.R. 2015. Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infection and immunity 83, 138-145.
|
[51] |
Li, V.S., and Clevers, H. 2012. In vitro expansion and transplantation of intestinal crypt stem cells. Gastroenterology 143, 30-34.
|
[52] |
Livet, J., Weissman, T.A., Kang, H., Draft, R.W., Lu, J., Bennis, R.A., Sanes, J.R., and Lichtman, J.W. 2007. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56-62.
|
[53] |
Mabbott, N.A., Donaldson, D.S., Ohno, H., Williams, I.R., and Mahajan, A. 2013. Microfold M cells: important immunosurveillance posts in the intestinal epithelium. Mucosal immunology 6, 666-677.
|
[54] |
Maru, Y., Orihashi, K., and Hippo, Y. 2016. Lentivirus-Based Stable Gene Delivery into Intestinal Organoids. Methods Mol Biol 1422, 13-21.
|
[55] |
Matano, M., Date, S., Shimokawa, M., Takano, A., Fujii, M., Ohta, Y., Watanabe, T., Kanai, T., and Sato, T. 2015. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 21, 256-262.
|
[56] |
Miron, N., and Cristea, V. 2012. Enterocytes: active cells in tolerance to food and microbial antigens in the gut. Clinical and experimental immunology 167, 405-412.
|
[57] |
Moran, G.W., Leslie, F.C., Levison, S.E., Worthington, J., and McLaughlin, J.T. 2008. Enteroendocrine cells: neglected players in gastrointestinal disorders? Therapeutic advances in gastroenterology 1, 51-60.
|
[58] |
Naik, S., Larsen, S.B., Gomez, N.C., Alaverdyan, K., Sendoel, A., Yuan, S., Polak, L., Kulukian, A., Chai, S., and Fuchs, E. 2017. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550, 475-480.
|
[59] |
Nguyen, T.L.A., Vieira-Silva, S., Liston, A., and Raes, J. 2015. How informative is the mouse for human gut microbiota research? Dis Model Mech 8, 1-16.
|
[60] |
Nozaki, K., Mochizuki, W., Matsumoto, Y., Matsumoto, T., Fukuda, M., Mizutani, T., Watanabe, M., and Nakamura, T. 2016. Co-culture with intestinal epithelial organoids allows efficient expansion and motility analysis of intraepithelial lymphocytes. Journal of gastroenterology 51, 206-213.
|
[61] |
Perlman, R.L. 2016. Mouse models of human disease An evolutionary perspective. Evol Med Public Hlth, 170-176.
|
[62] |
Perreault, N., and Beaulieu, J.F. 1996. Use of the dissociating enzyme thermolysin to generate viable human normal intestinal epithelial cell cultures. Exp Cell Res 224, 354-364.
|
[63] |
Polak, J.M., Sullivan, S.N., Bloom, S.R., Buchan, A.M., Facer, P., Brown, M.R., and Pearse, A.G. 1977. Specific localisation of neurotensin to the N cell in human intestine by radioimmunoassay and immunocytochemistry. Nature 270, 183-184.
|
[64] |
Qi, Z., Li, Y., Zhao, B., Xu, C., Liu, Y., Li, H., Zhang, B., Wang, X., Yang, X., Xie, W., et al. (2017). BMP restricts stemness of intestinal Lgr5(+) stem cells by directly suppressing their signature genes. Nature communications 8, 13824.
|
[65] |
Quaroni, A., and May, R.J. 1980. Establishment and characterizaton of intestinal epithelial cell cultures. Methods in cell biology 21B, 403-427.
|
[66] |
Sangiorgi, E., and Capecchi, M.R. 2008. Bmi1 is expressed in vivo in intestinal stem cells. Nature genetics 40, 915-920.
|
[67] |
Sato, T., Stange, D.E., Ferrante, M., Vries, R.G.J., van Es, J.H., van den Brink, S., van Houdt, W.J., Pronk, A., van Gorp, J., Siersema, P.D., et al. 2011a. Long-term Expansion of Epithelial Organoids From Human Colon, Adenoma, Adenocarcinoma, and Barrett's Epithelium. Gastroenterology 141, 1762-1772.
|
[68] |
Sato, T., van Es, J.H., Snippert, H.J., Stange, D.E., Vries, R.G., van den Born, M., Barker, N., Shroyer, N.F., van de Wetering, M., and Clevers, H. 2011b. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415-418.
|
[69] |
Sato, T., Vries, R.G., Snippert, H.J., van de Wetering, M., Barker, N., Stange, D.E., van Es, J.H., Abo, A., Kujala, P., Peters, P.J., et al. 2009. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262-U147.
|
[70] |
Schepers, A.G., Snippert, H.J., Stange, D.E., van den Born, M., van Es, J.H., van de Wetering, M., and Clevers, H. 2012. Lineage Tracing Reveals Lgr5+ Stem Cell Activity in Mouse Intestinal Adenomas. Science 337, 730-735.
|
[71] |
Schwank, G., Andersson-Rolf, A., Koo, B.K., Sasaki, N., and Clevers, H. 2013a. Generation of BAC Transgenic Epithelial Organoids. Plos One 8.
|
[72] |
Snippert, H.J., van der Flier, L.G., Sato, T., van Es, J.H., van den Born, M., Kroon-Veenboer, C., Barker, N., Klein, A.M., van Rheenen, J., Simons, B.D., et al. 2010. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134-144.
|
[73] |
Snippert, H.J., van Es, J.H., van den Born, M., Begthel, H., Stange, D.E., Barker, N., and Clevers, H. 2009. Prominin-1/CD133 marks stem cells and early progenitors in mouse small intestine. Gastroenterology 136, 2187-2194 e2181.
|
[74] |
Schwank, G., Koo, B.K., Sasselli, V., Dekkers, J.F., Heo, I., Demircan, T., Sasaki, N., Boymans, S., Cuppen, E., van der Ent, C.K., et al. 2013b. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell stem cell 13, 653-658.
|
[75] |
Suzuki, K., Murano, T., Shimizu, H., Ito, G., Nakata, T., Fujii, S., Ishibashi, F., Kawamoto, A., Anzai, S., Kuno, R., et al. 2018. Single cell analysis of Crohn's disease patient-derived small intestinal organoids reveals disease activity-dependent modification of stem cell properties. Journal of gastroenterology 53, 1035-1047.
|
[76] |
Tait, I.S., Evans, G.S., Flint, N., and Campbell, F.C. 1994. Colonic mucosal replacement by syngeneic small intestinal stem cell transplantation. American journal of surgery 167, 67-72.
|
[77] |
Taupin, D., and Podolsky, D.K. 2003. Trefoil factors: initiators of mucosal healing. Nature reviews Molecular cell biology 4, 721-732.
|
[78] |
Tetteh, P.W., Basak, O., Farin, H.F., Wiebrands, K., Kretzschmar, K., Begthel, H., van den Born, M., Korving, J., de Sauvage, F., van Es, J.H., et al. 2016. Replacement of Lost Lgr5-Positive Stem Cells through Plasticity of Their Enterocyte-Lineage Daughters. Cell stem cell 18, 203-213.
|
[79] |
Tomic, G., Morrissey, E., Kozar, S., Ben-Moshe, S., Hoyle, A., Azzarelli, R., Kemp, R., Chilamakuri, C.S.R., Itzkovitz, S., Philpott, A., et al. 2018. Phospho-regulation of ATOH1 Is Required for Plasticity of Secretory Progenitors and Tissue Regeneration. Cell stem cell 23, 436-443.
|
[80] |
Treuting, P.M., Dintzis, S.M., and Montine, K.S. 2011. Comparative Anatomy and Histology A Mouse and Human Atlas INTRODUCTION. Comparative Anatomy and Histology: A Mouse and Human Atlas, 1-6.
|
[81] |
van de Wetering, M., Francies, H.E., Francis, J.M., Bounova, G., Iorio, F., Pronk, A., van Houdt, W., van Gorp, J., Taylor-Weiner, A., Kester, L., et al. 2015. Prospective Derivation of a Living Organoid Biobank of Colorectal Cancer Patients. Cell 161, 933-945.
|
[82] |
Van der Flier, L.G., Haegebarth, A., Stange, D.E., Van de Wetering, M., and Clevers, H. 2009. OLFM4 Is a Robust Marker for Stem Cells in Human Intestine and Marks a Subset of Colorectal Cancer Cells. Gastroenterology 137, 15-17.
|
[83] |
Van der Flier, L.G., Sabates-Bellver, J., Oving, I., Haegebarth, A., De Palo, M., Anti, M., Van Gijn, M.E., Suijkerbuijk, S., Van de Wetering, M., Marra, G., et al. 2007. The Intestinal Wnt/TCF Signature. Gastroenterology 132, 628-632.
|
[84] |
van Es, J.H., Sato, T., van de Wetering, M., Lyubimova, A., Yee Nee, A.N., Gregorieff, A., Sasaki, N., Zeinstra, L., van den Born, M., Korving, J., et al. 2012. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nature cell biology 14, 1099-1104.
|
[85] |
Wallach, T.E., and Bayrer, J.R. 2017. Intestinal Organoids: New Frontiers in the Study of Intestinal Disease and Physiology. Journal of pediatric gastroenterology and nutrition 64, 180-185.
|
[86] |
Wang, Z., Dong, X., Ding, G., and Li, Y. 2010. Comparing the retention mechanisms of tandem duplicates and retrogenes in human and mouse genomes. Genet Sel Evol 42, 24.
|
[87] |
Wang, X., Yamamoto, Y., Wilson, L.H., Zhang, T., Howitt, B.E., Farrow, M.A., Kern, F., Ning, G., Hong, Y., Khor, C.C., et al. 2015. Cloning and variation of ground state intestinal stem cells. Nature 522, 173-178.
|
[88] |
Waterston, R.H., Lindblad-Toh, K., Birney, E., Rogers, J., Abril, J.F., Agarwal, P., Agarwala, R., Ainscough, R., Alexandersson, M., An, P., et al. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520-562.
|
[89] |
Weeber, F., van de Wetering, M., Hoogstraat, M., Dijkstra, K.K., Krijgsman, O., Kuilman, T., Gadellaa-van Hooijdonk, C.G.M., van der Velden, D.L., Peeper, D.S., Cuppen, E.P.J.G., et al. 2015. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proceedings of the National Academy of Sciences of the United States of America 112, 13308-13311.
|
[90] |
Wehkamp, J., and Stange, E.F. 2010. Paneth's disease. Journal of Crohn's & colitis 4, 523-531.
|
[91] |
Whitehead, R.H., Demmler, K., Rockman, S.P., and Watson, N.K. 1999. Clonogenic growth of epithelial cells from normal colonic mucosa from both mice and humans. Gastroenterology 117, 858-865.
|
[92] |
Wiegerinck, C.L., Janecke, A.R., Schneeberger, K., Vogel, G.F., van Haaften-Visser, D.Y., Escher, J.C., Adam, R., Thoni, C.E., Pfaller, K., Jordan, A.J., et al. 2014. Loss of syntaxin 3 causes variant microvillus inclusion disease. Gastroenterology 147, 65-68 e10.
|
[93] |
Williamson, I.A., Arnold, J.W., Samsa, L.A., Gaynor, L., DiSalvo, M., Cocchiaro, J.L., Carroll, I., Azcarate-Peril, M.A., Rawls, J.F., Allbritton, N.L., et al. 2018. A High-Throughput Organoid Microinjection Platform to Study Gastrointestinal Microbiota and Luminal Physiology. Cell Mol Gastroenter 6, 301-319.
|
[94] |
Winton, D.J., and Ponder, B.A. 1990. Stem-cell organization in mouse small intestine. Proceedings Biological sciences 241, 13-18.
|
[95] |
Woo, D.H., Chen, Q., Yang, T.L., Glineburg, M.R., Hoge, C., Leu, N.A., Johnson, F.B., and Lengner, C.J. 2016. Enhancing a Wnt-Telomere Feedback Loop Restores Intestinal Stem Cell Function in a Human Organotypic Model of Dyskeratosis Congenita. Cell stem cell 19, 397-405.
|
[96] |
Worsdorfer, P., Dalda, N., Kern, A., Kruger, S., Wagner, N., Kwok, C.K., Henke, E., and Ergun, S. 2019. Generation of complex human organoid models including vascular networks by incorporation of mesodermal progenitor cells. Sci Rep-Uk 9.
|
[97] |
Yan, K.S., Chia, L.A., Li, X., Ootani, A., Su, J., Lee, J.Y., Su, N., Luo, Y., Heilshorn, S.C., Amieva, M.R., et al. 2012. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proceedings of the National Academy of Sciences of the United States of America 109, 466-471.
|
[98] |
Yin, X.L., Farin, H.F., van Es, J.H., Clevers, H., Langer, R., and Karp, J.M. 2014. Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nat Methods 11, 106-112.
|
[99] |
Yui, S., Nakamura, T., Sato, T., Nemoto, Y., Mizutani, T., Zheng, X., Ichinose, S., Nagaishi, T., Okamoto, R., Tsuchiya, K., et al. 2012. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat Med 18, 618-623.
|
[100] |
Zhang, Y.G., Wu, S., Xia, Y., and Sun, J. 2014. Salmonella-infected crypt-derived intestinal organoid culture system for host-bacterial interactions. Physiological reports 2.
|
[101] |
Zietek, T., Rath, E., Haller, D., and Daniel, H. 2015. Intestinal organoids for assessing nutrient transport, sensing and incretin secretion. Sci Rep-Uk 5.
|