[1] |
Ahluwalia, G.S., Grem, J.L., Hao, Z., and Cooney, D.A. (1990). Metabolism and action of amino acid analog anti-cancer agents. Pharmacol Ther 46, 243-271.
|
[2] |
Almqvist, H., Axelsson, H., Jafari, R., Dan, C., Mateus, A., Haraldsson, M., Larsson, A., Martinez Molina, D., Artursson, P., Lundback, T., and Nordlund, P. (2016). CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil. Nat Commun 7, 11040.
|
[3] |
Cassago, A., Ferreira, A.P., Ferreira, I.M., Fornezari, C., Gomes, E.R., Greene, K.S., Pereira, H.M., Garratt, R.C., Dias, S.M., and Ambrosio, A.L. (2012). Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism. Proc Natl Acad Sci U S A 109, 1092-1097.
|
[4] |
Catane, R., Von Hoff, D.D., Glaubiger, D.L., and Muggia, F.M. (1979). Azaserine, DON, and azotomycin: three diazo analogs of L-glutamine with clinical antitumor activity. Cancer Treat Rep 63, 1033-1038.
|
[5] |
Feng, X., Hao, Y., and Wang, Z. (2016). Targeting glutamine metabolism in PIK3CA mutant colorectal cancers. Genes Dis 3, 241-243.
|
[6] |
Gross, M.I., Demo, S.D., Dennison, J.B., Chen, L., Chernov-Rogan, T., Goyal, B., Janes, J.R., Laidig, G.J., Lewis, E.R., Li, J., Mackinnon, A.L., Parlati, F., Rodriguez, M.L., Shwonek, P.J., Sjogren, E.B., Stanton, T.F., Wang, T., Yang, J., Zhao, F., and Bennett, M. K. (2014). Antitumor Activity of the Glutaminase Inhibitor CB-839 in Triple-Negative Breast Cancer. Molecular cancer therapeutics 13, 890-901.
|
[7] |
Hao, Y., Samuels, Y., Li, Q., Krokowski, D., Guan, B.J., Wang, C., Jin, Z., Dong, B., Cao, B., Feng, X., Xiang, M., Xu, C., Fink, S., Meropol, N.J., Xu, Y., Conlon, R.A., Markowitz, S., Kinzler, K.W., Velculescu, V.E., Brunengraber, H., Willis, J.E., LaFramboise, T., Hatzoglou, M., Zhang, G.F., Vogelstein, B. and Wang, Z. (2016). Oncogenic PIK3CA mutations reprogram glutamine metabolism in colorectal cancer. Nature communications 7, 11971.
|
[8] |
Leone, R.D., Zhao, L., Englert, J.M., Sun, I.M., Oh, M.H., Sun, I.H., Arwood, M.L., Bettencourt, I.A., Patel, C.H., Wen, J., et al. (2019). Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013-1021.
|
[9] |
Masisi, B.K., El Ansari, R., Alfarsi, L., Rakha, E.A., Green, A.R., and Craze, M.L. (2019). The role of glutaminase in cancer. Histopathology.
|
[10] |
Meric-Bernstam, F., Tannir, N., Harding, J., Voss, M., Mier, J., DeMichele, A., Munster, P., Patel, M., Iliopoulos, O., Owonikoko, T., Whiting, S., Orford, K., Bennett, M., Carvajal, R., McKay, R., Fan, A., Telli, M., and Infante, J. (2016). Phase 1 study of CB-839, a small molecule inhibitor of glutaminase, in combination with everolimus in patients (pts) with clear cell and papillary renal cell cancer (RCC). European Journal of Cancer 69, S12-S13.
|
[11] |
Martinez Molina, D., Jafari, R., Ignatushchenko, M., Seki, T., Larsson, E.A., Dan, C., Sreekumar, L., Cao, Y., and Nordlund, P. (2013). Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84-87.
|
[12] |
Ovejera, A.A., Houchens, D.P., Catane, R., Sheridan, M.A., and Muggia, F.M. (1979). Efficacy of 6-diazo-5-oxo-L-norleucine and N-[N-gamma-glutamyl-6-diazo-5-oxo-norleucinyl]-6-diazo-5-oxo-norleucine against experimental tumors in conventional and nude mice. Cancer Res 39, 3220-3224.
|
[13] |
Parlati, F. (2014). Novel Pharmacodynamic Assays to Measure Glutaminase Inhibition following Oral Administration of CB-839. Oral Presentation, AACR Annual Meeting.
|
[14] |
Raczka, A., and Reynolds, P. (2019). Glutaminase inhibition in renal cell carcinoma therapy. Cancer Drug Resistance 2, 356-364.
|
[15] |
Zhao, Y., Zhao, X., Chen, V., Feng, Y., Wang, L., Croniger, C., Conlon, R.A., Markowitz, S., Fearon, E., Puchowicz, M., Fearon, E., Puchowicz, M., Brunengraber, H., Hao, Y., and Wang, Z. (2019). Colorectal cancers utilize glutamine as an anaplerotic substrate of the TCA cycle in vivo. Sci Rep 9, 19180.
|