5.9
CiteScore
5.9
Impact Factor
Volume 47 Issue 8
Aug.  2020
Turn off MathJax
Article Contents

HPV-CCDC106 integration alters local chromosome architecture and hijacks an enhancer by three-dimensional genome structure remodeling in cervical cancer

doi: 10.1016/j.jgg.2020.05.006
More Information
  • Integration of human papillomavirus (HPV) DNA into the human genome is a reputed key driver of cervical cancer. However, the effects of HPV integration on chromatin structural organization and gene expression are largely unknown. We studied a cohort of 61 samples and identified an integration hot spot in the CCDC106 gene on chromosome 19. We then selected fresh cancer tissue that contained the unique integration loci at CCDC106 with no HPV episomal DNA and performed whole-genome, RNA, chromatin immunoprecipitation and high-throughput chromosome conformation capture (Hi-C) sequencing to identify the mechanisms of HPV integration in cervical carcinogenesis. Molecular analyses indicated that chromosome 19 exhibited significant genomic variation and differential expression densities, with correlation found between three-dimensional (3D) structural change and gene expression. Importantly, HPV integration divided one topologically associated domain (TAD) into two smaller TADs and hijacked an enhancer from PEG3 to CCDC106, with a decrease in PEG3 expression and an increase in CCDC106 expression. This expression dysregulation was further confirmed using 10 samples from our cohort, which exhibited the same HPV-CCDC106 integration. In summary, we found that HPV-CCDC106 integration altered local chromosome architecture and hijacked an enhancer via 3D genome structure remodeling. Thus, this study provides insight into the 3D structural mechanism underlying HPV integration in cervical carcinogenesis.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Adey, A., Burton, J.N., Kitzman, J.O., Hiatt, J.B., Lewis, A.P., Martin, B.K., Qiu, R., Lee, C., Shendure, J., 2013. The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line. Nature 500, 207-211.
    [2]
    Akagi, K., Li, J., Broutian, T.R., Padilla-Nash, H., Xiao, W., Jiang, B., Rocco, J.W., Teknos, T.N., Kumar, B., Wangsa, D., He, D., Ried, T., Symer, D.E., Gillison, M.L., 2014. Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability. Genome Res 24, 185-199.
    [3]
    Akers, N.K., Schadt, E.E., Losic, B., 2018. STAR Chimeric Post for rapid detection of circular RNA and fusion transcripts. Bioinformatics 34, 2364-2370.
    [4]
    Anders, S., Pyl, P.T., Huber, W., 2015. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166-169.
    [5]
    Androphy, E.J., Hubbert, N.L., Schiller, J.T., Lowy, D.R., 1987. Identification of the HPV-16 E6 protein from transformed mouse cells and human cervical carcinoma cell lines. EMBO J 6, 989-992.
    [6]
    Ay, F., Bailey, T.L., Noble, W.S., 2014. Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res 24, 999-1011.
    [7]
    Bodelon, C., Untereiner, M.E., Machiela, M.J., Vinokurova, S., Wentzensen, N., 2016. Genomic characterization of viral integration sites in HPV-related cancers. Int J Cancer 139, 2001-2011.
    [8]
    Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120.
    [9]
    Bononi, I., Bosi, S., Bonaccorsi, G., Marci, R., Patella, A., Ferretti, S., Tognon, M., Garutti, P., Martini, F., 2012. Establishment of keratinocyte colonies from small-sized cervical intraepithelial neoplasia specimens. J Cell Physiol 227, 3787-3795.
    [10]
    Brown, J., Pirrung, M., McCue, L.A., 2017. FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics.
    [11]
    Cancer Genome Atlas Research N, Albert Einstein College of M, Analytical Biological S, Barretos Cancer, H,, Baylor College of, M, Beckman Research Institute of City of, H, Buck Institute for Research on, A, Canada's Michael Smith Genome Sciences, C, Harvard Medical, S, Helen, F.G.C.C., Research Institute at Christiana Care Health, S, HudsonAlpha Institute for, B., Ilsbio, L.L.C., Indiana University School of, M., Institute of Human, V., Institute for Systems, B., International Genomics, C., Leidos, B., Massachusetts General, H., McDonnell Genome Institute at Washington, U., Medical College of, W., Medical University of South, C., Memorial Sloan Kettering Cancer, C., Montefiore Medical, C., NantOmics, National Cancer, I., National Hospital, A.N., National Human Genome Research, I., National Institute of Environmental Health, S., National Institute on, D., Other Communication, D., Ontario Tumour Bank, L.H.S.C., Ontario Tumour Bank, O.I.f.C.R., Ontario Tumour Bank, T.O.H., Oregon, H., Science, U., Samuel Oschin Comprehensive Cancer Institute, C.-S.M.C., International, S.R.A., St Joseph's Candler Health, S., Eli, Edythe, L.B.I.o.M.I.o.T., Harvard, U., Research Institute at Nationwide Children's, H., Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, U., University of, B., University of Texas, M.D.A.C.C., University of Abuja Teaching, H., University of Alabama at, B., University of California, I., University of California Santa, C., University of Kansas Medical, C., University of, L., University of New Mexico Health Sciences, C., University of North Carolina at Chapel, H., University of Oklahoma Health Sciences, C., University of, P., University of Sao Paulo, R.a.P.M.S., University of Southern, C., University of, W., University of Wisconsin School of, M., Public, H., Van Andel Research, I., Washington University in St, L. 2017. Integrated genomic and molecular characterization of cervical cancer. Nature 543, 378-384.
    [12]
    Chiang, C., Layer, R.M., Faust, G.G., Lindberg, M.R., Rose, D.B., Garrison, E.P., Marth, G.T., Quinlan, A.R., Hall, I.M., 2015. SpeedSeq: ultra-fast personal genome analysis and interpretation. Nat Methods 12, 966-968.
    [13]
    Cremer, T., Cremer, C., 2001. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2, 292-301.
    [14]
    Ding, W., Hu, Z., Zhu, D., Jiang, X., Yu, L., Wang, X., Zhang, C., Wang, L., Ji, T., Li, K., He, D., Xia, X., Liu, D., Zhou, J., Ma, D., Wang, H., 2014. Zinc finger nucleases targeting the human papillomavirus E7 oncogene induce E7 disruption and a transformed phenotype in HPV16/18-positive cervical cancer cells. Clin Cancer Res 20, 6495-6503.
    [15]
    Durand, N.C., Shamim, M.S., Machol, I., Rao, S.S., Huntley, M.H., Lander, E.S., Aiden, E.L., 2016. Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell Syst 3, 95-98.
    [16]
    Feng, W., Marquez, R.T., Lu, Z., Liu, J., Lu, K.H., Issa, J.P., Fishman, D.M., Yu, Y., Bast, R.C., Jr., 2008. Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down-regulated in human ovarian cancers by loss of heterozygosity and promoter methylation. Cancer 112, 1489-1502.
    [17]
    Forbes, S.A., Tang, G., Bindal, N., Bamford, S., Dawson, E., Cole, C., Kok, C.Y., Jia, M., Ewing, R., Menzies, A., Teague, J.W., Stratton, M.R., Futreal, P.A., 2010. COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res 38, D652-D657.
    [18]
    Fullwood, M.J., Ruan, Y., 2009. ChIP-based methods for the identification of long-range chromatin interactions. J Cell Biochem 107, 30-39.
    [19]
    Geeven, G., Teunissen, H., de Laat, W., de Wit, E., 2018. peakC: a flexible, non-parametric peak calling package for 4C and Capture-C data. Nucleic Acids Res 46, e91.
    [20]
    Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B.W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., Regev, A., 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29, 644-652.
    [21]
    Guo, Y., Xu, Q., Canzio, D., Shou, J., Li, J., Gorkin, D.U., Jung, I., Wu, H., Zhai, Y., Tang, Y., Lu, Y., Wu, Y., Jia, Z., Li, W., Zhang, M.Q., Ren, B., Krainer, A.R., Maniatis, T., Wu, Q., 2015. CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function. Cell 162, 900-910.
    [22]
    Hines, M.D., Allen-Hoffmann, B.L., 1996. Keratinocyte growth factor inhibits cross-linked envelope formation and nucleosomal fragmentation in cultured human keratinocytes. J Biol Chem 271, 6245-6251.
    [23]
    Hong, P., Jiang, H., Xu, W., Lin, D., Xu, Q., Cao, G., Li, G., 2020. The DLO Hi-C Tool for Digestion-Ligation-Only Hi-C Chromosome Conformation Capture Data Analysis. Genes (Basel) 11.
    [24]
    Hu, Z., Ding, W., Zhu, D., Yu, L., Jiang, X., Wang, X., Zhang, C., Wang, L., Ji, T., Liu, D., He, D., Xia, X., Zhu, T., Wei, J., Wu, P., Wang, C., Xi, L., Gao, Q., Chen, G., Liu, R., Li, K., Li, S., Wang, S., Zhou, J., Ma, D., Wang, H., 2015a. TALEN-mediated targeting of HPV oncogenes ameliorates HPV-related cervical malignancy. J Clin Invest 125, 425-436.
    [25]
    Hu, Z., Zhu, D., Wang, W., Li, W., Jia, W., Zeng, X., Ding, W., Yu, L., Wang, X., Wang, L., Shen, H., Zhang, C., Liu, H., Liu, X., Zhao, Y., Fang, X., Li, S., Chen, W., Tang, T., Fu, A., Wang, Z., Chen, G., Gao, Q., Li, S., Xi, L., Wang, C., Liao, S., Ma, X., Wu, P., Li, K., Wang, S., Zhou, J., Wang, J., Xu, X., Wang, H., Ma, D., 2015b. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. Nat Genet 47, 158-163.
    [26]
    Imakaev, M., Fudenberg, G., McCord, R.P., Naumova, N., Goloborodko, A., Lajoie, B.R., Dekker, J., Mirny, L.A., 2012. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods 9, 999-1003.
    [27]
    Khoury, J.D., Tannir, N.M., Williams, M.D., Chen, Y., Yao, H., Zhang, J., Thompson, E.J., Network, T., Meric-Bernstam, F., Medeiros, L.J., Weinstein, J.N., Su, X., 2013. Landscape of DNA virus associations across human malignant cancers: analysis of 3,775 cases using RNA-Seq. J Virol 87, 8916-8926.
    [28]
    Kim, D., Langmead, B., Salzberg, S.L., 2015. HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12, 357-360.
    [29]
    Kohda, T., Asai, A., Kuroiwa, Y., Kobayashi, S., Aisaka, K., Nagashima, G., Yoshida, M.C., Kondo, Y., Kagiyama, N., Kirino, T., Kaneko-Ishino, T., Ishino, F., 2001. Tumour suppressor activity of human imprinted gene PEG3 in a glioma cell line. Genes Cells 6, 237-247.
    [30]
    Koneva, L.A., Zhang, Y., Virani, S., Hall, P.B., McHugh, J.B., Chepeha, D.B., Wolf, G.T., Carey, T.E., Rozek, L.S., Sartor, M.A., 2018. HPV Integration in HNSCC Correlates with Survival Outcomes, Immune Response Signatures, and Candidate Drivers. Mol Cancer Res 16, 90-102.
    [31]
    Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760.
    [32]
    Li, W., Zeng, X., Lee, N.P., Liu, X., Chen, S., Guo, B., Yi, S., Zhuang, X., Chen, F., Wang, G., Poon, R.T., Fan, S.T., Mao, M., Li, Y., Li, S., Wang, J., Jianwang, Xu, X., Jiang, H., Zhang, X., 2013. HIVID: an efficient method to detect HBV integration using low coverage sequencing. Genomics 102, 338-344.
    [33]
    Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., Sandstrom, R., Bernstein, B., Bender, M.A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L.A., Lander, E.S., Dekker, J., 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289-293.
    [34]
    Lin, D., Hong, P., Zhang, S., Xu, W., Jamal, M., Yan, K., Lei, Y., Li, L., Ruan, Y., Fu, Z.F., Li, G., Cao, G., 2018. Digestion-ligation-only Hi-C is an efficient and cost-effective method for chromosome conformation capture. Nat Genet 50, 754-763.
    [35]
    Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550.
    [36]
    Lun, A.T., Smyth, G.K., 2015. diffHic: a Bioconductor package to detect differential genomic interactions in Hi-C data. BMC Bioinformatics 16, 258.
    [37]
    Lupianez, D.G., Kraft, K., Heinrich, V., Krawitz, P., Brancati, F., Klopocki, E., Horn, D., Kayserili, H., Opitz, J.M., Laxova, R., Santos-Simarro, F., Gilbert-Dussardier, B., Wittler, L., Borschiwer, M., Haas, S.A., Osterwalder, M., Franke, M., Timmermann, B., Hecht, J., Spielmann, M., Visel, A., Mundlos, S., 2015. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012-1025.
    [38]
    McBride, A.A., Warburton, A., 2017. The role of integration in oncogenic progression of HPV-associated cancers. PLoS Pathog 13, e1006211.
    [39]
    Ning, Y., Wang, C., Liu, X., Du, Y., Liu, S., Liu, K., Zhou, J., Zhou, C., 2019. CK2-mediated CCDC106 phosphorylation is required for p53 degradation in cancer progression. J Exp Clin Cancer Res 38, 131.
    [40]
    Ojesina, A.I., Lichtenstein, L., Freeman, S.S., Pedamallu, C.S., Imaz-Rosshandler, I., Pugh, T.J., Cherniack, A.D., Ambrogio, L., Cibulskis, K., Bertelsen, B., Romero-Cordoba, S., Trevino, V., Vazquez-Santillan, K., Guadarrama, A.S., Wright, A.A., Rosenberg, M.W., Duke, F., Kaplan, B., Wang, R., Nickerson, E., Walline, H.M., Lawrence, M.S., Stewart, C., Carter, S.L., McKenna, A., Rodriguez-Sanchez, I.P., Espinosa-Castilla, M., Woie, K., Bjorge, L., Wik, E., Halle, M.K., Hoivik, E.A., Krakstad, C., Gabino, N.B., Gomez-Macias, G.S., Valdez-Chapa, L.D., Garza-Rodriguez, M.L., Maytorena, G., Vazquez, J., Rodea, C., Cravioto, A., Cortes, M.L., Greulich, H., Crum, C.P., Neuberg, D.S., Hidalgo-Miranda, A., Escareno, C.R., Akslen, L.A., Carey, T.E., Vintermyr, O.K., Gabriel, S.B., Barrera-Saldana, H.A., Melendez-Zajgla, J., Getz, G., Salvesen, H.B., Meyerson, M., 2014. Landscape of genomic alterations in cervical carcinomas. Nature 506, 371-375.
    [41]
    Oyervides-Munoz, M.A., Perez-Maya, A.A., Rodriguez-Gutierrez, H.F., Gomez-Macias, G.S., Fajardo-Ramirez, O.R., Trevino, V., Barrera-Saldana, H.A., Garza-Rodriguez, M.L., 2018. Understanding the HPV integration and its progression to cervical cancer. Infect Genet Evol 61, 134-144.
    [42]
    Pertea, M., Kim, D., Pertea, G.M., Leek, J.T., Salzberg, S.L., 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11, 1650-1667.
    [43]
    Peter, M., Rosty, C., Couturier, J., Radvanyi, F., Teshima, H., Sastre-Garau, X., 2006. MYC activation associated with the integration of HPV DNA at the MYC locus in genital tumors. Oncogene 25, 5985-5993.
    [44]
    Politz, J., van Driel, R., Sauer, M., Pombo, A., 2003. From linear genome sequence to three-dimensional organization of the cell nucleus. Genome Biol 4, 310.
    [45]
    Pope, B.D., Ryba, T., Dileep, V., Yue, F., Wu, W., Denas, O., Vera, D.L., Wang, Y., Hansen, R.S., Canfield, T.K., Thurman, R.E., Cheng, Y., Gulsoy, G., Dennis, J.H., Snyder, M.P., Stamatoyannopoulos, J.A., Taylor, J., Hardison, R.C., Kahveci, T., Ren, B., Gilbert, D.M., 2014. Topologically associating domains are stable units of replication-timing regulation. Nature 515, 402-405.
    [46]
    Quinlan, A.R., 2014. BEDTools: The Swiss-Army Tool for Genome Feature Analysis. Curr Protoc Bioinformatics 47, 11 12 11-34.
    [47]
    Relaix, F., Wei, X., Li, W., Pan, J., Lin, Y., Bowtell, D.D., Sassoon, D.A., Wu, X., 2000. Pw1/Peg3 is a potential cell death mediator and cooperates with Siah1a in p53-mediated apoptosis. Proc Natl Acad Sci U S A 97, 2105-2110.
    [48]
    Robinson, J.T., Thorvaldsdottir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., Mesirov, J.P., 2011. Integrative genomics viewer. Nat Biotechnol 29, 24-26.
    [49]
    Sade-Feldman, M., Jiao, Y.J., Chen, J.H., Rooney, M.S., Barzily-Rokni, M., Eliane, J.P., Bjorgaard, S.L., Hammond, M.R., Vitzthum, H., Blackmon, S.M., Frederick, D.T., Hazar-Rethinam, M., Nadres, B.A., Van Seventer, E.E., Shukla, S.A., Yizhak, K., Ray, J.P., Rosebrock, D., Livitz, D., Adalsteinsson, V., Getz, G., Duncan, L.M., Li, B., Corcoran, R.B., Lawrence, D.P., Stemmer-Rachamimov, A., Boland, G.M., Landau, D.A., Flaherty, K.T., Sullivan, R.J., Hacohen, N., 2017. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun 8, 1136.
    [50]
    Shen, C., Liu, Y., Shi, S., Zhang, R., Zhang, T., Xu, Q., Zhu, P., Chen, X., Lu, F., 2017. Long-distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region upregulating the allele-specific MYC expression in HeLa cells. Int J Cancer 141, 540-548.
    [51]
    Sherry, S.T., Ward, M.H., Kholodov, M., Baker, J., Phan, L., Smigielski, E.M., Sirotkin, K., 2001. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29, 308-311.
    [52]
    Shin, H., Shi, Y., Dai, C., Tjong, H., Gong, K., Alber, F., Zhou, X.J., 2016. TopDom: an efficient and deterministic method for identifying topological domains in genomes. Nucleic Acids Res 44, e70.
    [53]
    Siegel, R.L., Miller, K.D., Jemal, A., 2017. Cancer Statistics, 2017. CA Cancer J Clin 67, 7-30.
    [54]
    Spielmann, M., Lupianez, D.G., Mundlos, S., 2018. Structural variation in the 3D genome. Nat Rev Genet 19, 453-467.
    [55]
    Tang, K.W., Alaei-Mahabadi, B., Samuelsson, T., Lindh, M., Larsson, E., 2013. The landscape of viral expression and host gene fusion and adaptation in human cancer. Nat Commun 4, 2513.
    [56]
    Vogelstein, B., Lane, D., Levine, A.J., 2000. Surfing the p53 network. Nature 408, 307-310.
    [57]
    Waggoner, S.E., 2003. Cervical cancer. Lancet 361, 2217-2225.
    [58]
    Walboomers, J.M., Jacobs, M.V., Manos, M.M., Bosch, F.X., Kummer, J.A., Shah, K.V., Snijders, P.J., Peto, J., Meijer, C.J., Munoz, N., 1999. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189, 12-19.
    [59]
    Wang, K., Li, M., Hakonarson, H., 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38, e164.
    [60]
    Wentzensen, N., Vinokurova, S., von Knebel Doeberitz, M., 2004. Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res 64, 3878-3884.
    [61]
    Wu, P., Yang, S., Singh, S., Qin, F., Kumar, S., Wang, L., Ma, D., Li, H., 2018. The Landscape and Implications of Chimeric RNAs in Cervical Cancer. EBioMedicine 37, 158-167.
    [62]
    Yu, T., Ferber, M.J., Cheung, T.H., Chung, T.K., Wong, Y.F., Smith, D.I., 2005. The role of viral integration in the development of cervical cancer. Cancer Genet Cytogenet 158, 27-34.
    [63]
    Zhao, J.W., Fang, F., Guo, Y., Zhu, T.L., Yu, Y.Y., Kong, F.F., Han, L.F., Chen, D.S., Li, F., 2016. HPV16 integration probably contributes to cervical oncogenesis through interrupting tumor suppressor genes and inducing chromosome instability. J Exp Clin Cancer Res 35, 180.
    [64]
    Zhou, J., Qiao, X., Xiao, L., Sun, W., Wang, L., Li, H., Wu, Y., Ding, X., Hu, X., Zhou, C., Zhang, J., 2010. Identification and characterization of the novel protein CCDC106 that interacts with p53 and promotes its degradation. FEBS Lett 584, 1085-1090.
    [65]
    Zhou, X., Maricque, B., Xie, M., Li, D., Sundaram, V., Martin, E.A., Koebbe, B.C., Nielsen, C., Hirst, M., Farnham, P., Kuhn, R.M., Zhu, J., Smirnov, I., Kent, W.J., Haussler, D., Madden, P.A., Costello, J.F., Wang, T., 2011. The Human Epigenome Browser at Washington University. Nat Methods 8, 989-990.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures (5)

    Article Metrics

    Article views (130) PDF downloads (5) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return