5.9
CiteScore
5.9
Impact Factor
Volume 47 Issue 7
Jul.  2020
Turn off MathJax
Article Contents

Complexities and pitfalls in analyzing and interpreting mitochondrial DNA content in human cancer

doi: 10.1016/j.jgg.2020.04.007
More Information
  • Corresponding author: E-mail address: TXL80@case.edu (Thomas LaFramboise)
  • Publish Date: 2020-07-25
  • Mutations in the human mitochondrial genome have been observed in all types of human cancer, indicating that mutations might contribute to tumorigenesis, metastasis, recurrence, or drug response. This possibility is appealing because of the known shift from oxidative metabolism to glycolysis, known as the Warburg effect, that occurs in malignancy. Mitochondrial DNA (mtDNA) mutations could either be maternally inherited and predispose to cancer (germ line mutations) or occur sporadically in the mtDNA of specific tissues (tissue- or tumor-specific somatic mutations) and contribute to the tumor initiation and progression process. High-throughput sequencing technologies now enable comprehensive detection of mtDNA variation in tissues and bodily fluids, with the potential to be used as an early detection tool that may impact the treatment of cancer. Here, we discuss insights into the roles of mtDNA mutations in carcinogenesis, highlighting the complexities involved in the analysis and interpretation of mitochondrial genomic content, technical challenges in studying their contribution to pathogenesis, and the value of mtDNA mutations in developing early detection, diagnosis, prognosis, and therapeutic strategies for cancer.
  • loading
  • [1]
    Abnet, C.C., Huppi, K., Carrera, A., Armistead, D., McKenney, K., Hu, N., Tang, Z.Z., Taylor, P.R., Dawsey, S.M., 2004. Control region mutations and the 'common deletion' are frequent in the mitochondrial DNA of patients with esophageal squamous cell carcinoma. BMC Cancer 4, 30.
    [2]
    Arnold, R.S., Fedewa, S.A., Goodman, M., Osunkoya, A.O., Kissick, H.T., Morrissey, C., True, L.D., Petros, J.A., 2015. Bone metastasis in prostate cancer: Recurring mitochondrial DNA mutation reveals selective pressure exerted by the bone microenvironment. Bone 78, 81-86.
    [3]
    Bai, R.K., Chang, J., Yeh, K.T., Lou, M.A., Lu, J.F., Tan, D.J., Liu, H., Wong, L.J., 2011. Mitochondrial DNA content varies with pathological characteristics of breast cancer. J Oncol 2011, 496189.
    [4]
    Bellizzi, D., D'Aquila, P., Scafone, T., Giordano, M., Riso, V., Riccio, A., Passarino, G., 2013. The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res 20, 537-547.
    [5]
    Birsoy, K., Possemato, R., Lorbeer, F.K., Bayraktar, E.C., Thiru, P., Yucel, B., Wang, T., Chen, W.W., Clish, C.B., Sabatini, D.M., 2014. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 508, 108-112.
    [6]
    Bosworth, C.M., Grandhi, S., Gould, M.P., LaFramboise, T., 2017. Detection and quantification of mitochondrial DNA deletions from next-generation sequence data. BMC Bioinformatics 18, 407.
    [7]
    Butler, T.M., Spellman, P.T., Gray, J., 2017. Circulating-tumor DNA as an early detection and diagnostic tool. Curr Opin Genet Dev 42, 14-21.
    [8]
    Calabrese, C., Simone, D., Diroma, M.A., Santorsola, M., Gutta, C., Gasparre, G., Picardi, E., Pesole, G., Attimonelli, M., 2014. MToolBox: a highly automated pipeline for heteroplasmy annotation and prioritization analysis of human mitochondrial variants in high-throughput sequencing. Bioinformatics 30, 3115-3117.
    [9]
    Canter, J.A., Kallianpur, A.R., Parl, F.F., Millikan, R.C., 2005. Mitochondrial DNA G10398A polymorphism and invasive breast cancer in African-American women. Cancer Res 65, 8028-8033.
    [10]
    Cavalcante, G.C., Marinho, A.N.R., Anaissi, A.K., Vinasco-Sandoval, T., Ribeiro-Dos-Santos, A., Vidal, A.F., de Araujo, G.S., Demachki, S., Ribeiro-Dos-Santos, A., 2019. Whole mitochondrial genome sequencing highlights mitochondrial impact in gastric cancer. Sci Rep 9, 15716.
    [11]
    Cibulskis, K., McKenna, A., Fennell, T., Banks, E., DePristo, M., Getz, G., 2011. ContEst: estimating cross-contamination of human samples in next-generation sequencing data. Bioinformatics 27, 2601-2602.
    [12]
    Cocetta, V., Ragazzi, E., Montopoli, M., 2019. Mitochondrial Involvement in Cisplatin Resistance. Int J Mol Sci 20.
    [13]
    Coller, H.A., Khrapko, K., Bodyak, N.D., Nekhaeva, E., Herrero-Jimenez, P., Thilly, W.G., 2001. High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nat Genet 28, 147-150.
    [14]
    Cree, L.M., Samuels, D.C., de Sousa Lopes, S.C., Rajasimha, H.K., Wonnapinij, P., Mann, J.R., Dahl, H.H., Chinnery, P.F., 2008. A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat Genet 40, 249-254.
    [15]
    Cuezva, J.M., Krajewska, M., de Heredia, M.L., Krajewski, S., Santamaria, G., Kim, H., Zapata, J.M., Marusawa, H., Chamorro, M., Reed, J.C., 2002. The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res 62, 6674-6681.
    [16]
    Cui, H., Li, F., Chen, D., Wang, G., Truong, C.K., Enns, G.M., Graham, B., Milone, M., Landsverk, M.L., Wang, J., Zhang, W., Wong, L.J., 2013. Comprehensive next-generation sequence analyses of the entire mitochondrial genome reveal new insights into the molecular diagnosis of mitochondrial DNA disorders. Genet Med 15, 388-394.
    [17]
    Dai, J.G., Xiao, Y.B., Min, J.X., Zhang, G.Q., Yao, K., Zhou, R.J., 2006. Mitochondrial DNA 4977 BP deletion mutations in lung carcinoma. Indian J Cancer 43, 20-25.
    [18]
    Damm, F., Bunke, T., Thol, F., Markus, B., Wagner, K., Gohring, G., Schlegelberger, B., Heil, G., Reuter, C.W., Pullmann, K., Schlenk, R.F., Dohner, K., Heuser, M., Krauter, J., Dohner, H., Ganser, A., Morgan, M.A., 2012. Prognostic implications and molecular associations of NADH dehydrogenase subunit 4 (ND4) mutations in acute myeloid leukemia. Leukemia 26, 289-295.
    [19]
    Dees, N.D., Zhang, Q., Kandoth, C., Wendl, M.C., Schierding, W., Koboldt, D.C., Mooney, T.B., Callaway, M.B., Dooling, D., Mardis, E.R., Wilson, R.K., Ding, L., 2012. MuSiC: identifying mutational significance in cancer genomes. Genome Res 22, 1589-1598.
    [20]
    Devall, M., Smith, R.G., Jeffries, A., Hannon, E., Davies, M.N., Schalkwyk, L., Mill, J., Weedon, M., Lunnon, K., 2017. Regional differences in mitochondrial DNA methylation in human post-mortem brain tissue. Clin Epigenetics 9, 47.
    [21]
    Dimberg, J., Hong, T.T., Nguyen, L.T.T., Skarstedt, M., Lofgren, S., Matussek, A., 2015. Common 4977 bp deletion and novel alterations in mitochondrial DNA in Vietnamese patients with breast cancer. Springerplus 4, 58.
    [22]
    Ellinger, J., Albers, P., Muller, S.C., von Ruecker, A., Bastian, P.J., 2009. Circulating mitochondrial DNA in the serum of patients with testicular germ cell cancer as a novel noninvasive diagnostic biomarker. BJU Int 104, 48-52.
    [23]
    Ellinger, J., Muller, D.C., Muller, S.C., Hauser, S., Heukamp, L.C., von Ruecker, A., Bastian, P.J., Walgenbach-Brunagel, G., 2012. Circulating mitochondrial DNA in serum: a universal diagnostic biomarker for patients with urological malignancies. Urol Oncol 30, 509-515.
    [24]
    Fendt, L., Niederstatter, H., Huber, G., Zelger, B., Dunser, M., Seifarth, C., Rock, A., Schafer, G., Klocker, H., Parson, W., 2011. Accumulation of mutations over the entire mitochondrial genome of breast cancer cells obtained by tissue microdissection. Breast Cancer Res Treat 128, 327-336.
    [25]
    Fendt, L., Zimmermann, B., Daniaux, M., Parson, W., 2009. Sequencing strategy for the whole mitochondrial genome resulting in high quality sequences. BMC Genomics 10, 139.
    [26]
    Feng, S., Xiong, L., Ji, Z., Cheng, W., Yang, H., 2012. Correlation between increased ND2 expression and demethylated displacement loop of mtDNA in colorectal cancer. Mol Med Rep 6, 125-130.
    [27]
    Fliss, M.S., Usadel, H., Caballero, O.L., Wu, L., Buta, M.R., Eleff, S.M., Jen, J., Sidransky, D., 2000. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287, 2017-2019.
    [28]
    Franko, A., Baris, O.R., Bergschneider, E., von Toerne, C., Hauck, S.M., Aichler, M., Walch, A.K., Wurst, W., Wiesner, R.J., Johnston, I.C., de Angelis, M.H., 2013. Efficient isolation of pure and functional mitochondria from mouse tissues using automated tissue disruption and enrichment with anti-TOM22 magnetic beads. PLoS One 8, e82392.
    [29]
    Gammage, P.A., Gaude, E., Van Haute, L., Rebelo-Guiomar, P., Jackson, C.B., Rorbach, J., Pekalski, M.L., Robinson, A.J., Charpentier, M., Concordet, J.P., Frezza, C., Minczuk, M., 2016. Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs. Nucleic Acids Res 44, 7804-7816.
    [30]
    Gao, J., Wen, S., Zhou, H., Feng, S., 2015. De-methylation of displacement loop of mitochondrial DNA is associated with increased mitochondrial copy number and nicotinamide adenine dinucleotide subunit 2 expression in colorectal cancer. Mol Med Rep 12, 7033-7038.
    [31]
    Gao, R., Davis, A., McDonald, T.O., Sei, E., Shi, X., Wang, Y., Tsai, P.C., Casasent, A., Waters, J., Zhang, H., Meric-Bernstam, F., Michor, F., Navin, N.E., 2016. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat Genet 48, 1119-1130.
    [32]
    Gerlinger, M., Horswell, S., Larkin, J., Rowan, A.J., Salm, M.P., Varela, I., Fisher, R., McGranahan, N., Matthews, N., Santos, C.R., Martinez, P., Phillimore, B., Begum, S., Rabinowitz, A., Spencer-Dene, B., Gulati, S., Bates, P.A., Stamp, G., Pickering, L., Gore, M., Nicol, D.L., Hazell, S., Futreal, P.A., Stewart, A., Swanton, C., 2014. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet 46, 225-233.
    [33]
    Gerlinger, M., Rowan, A.J., Horswell, S., Math, M., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., Varela, I., Phillimore, B., Begum, S., McDonald, N.Q., Butler, A., Jones, D., Raine, K., Latimer, C., Santos, C.R., Nohadani, M., Eklund, A.C., Spencer-Dene, B., Clark, G., Pickering, L., Stamp, G., Gore, M., Szallasi, Z., Downward, J., Futreal, P.A., Swanton, C., 2012. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366, 883-892.
    [34]
    Gould, M.P., Bosworth, C.M., McMahon, S., Grandhi, S., Grimberg, B.T., LaFramboise, T., 2015. PCR-Free Enrichment of Mitochondrial DNA from Human Blood and Cell Lines for High Quality Next-Generation DNA Sequencing. PLoS One 10, e0139253.
    [35]
    Grandhi, S., Bosworth, C., Maddox, W., Sensiba, C., Akhavanfard, S., Ni, Y., LaFramboise, T., 2017. Heteroplasmic shifts in tumor mitochondrial genomes reveal tissue-specific signals of relaxed and positive selection. Hum Mol Genet 26, 2912-2922.
    [36]
    Grandhi, S., Gould, L., Wang, J., Grandhi, A., LaFramboise, T., 2019. Mitochondrial genomics in the cancer cell line encyclopedia and a scoring method to effectively pair cell lines for cytoplasmic hybridization. Mitochondrion 46, 256-261.
    [37]
    Greaves, L.C., Nooteboom, M., Elson, J.L., Tuppen, H.A., Taylor, G.A., Commane, D.M., Arasaradnam, R.P., Khrapko, K., Taylor, R.W., Kirkwood, T.B., Mathers, J.C., Turnbull, D.M., 2014. Clonal expansion of early to mid-life mitochondrial DNA point mutations drives mitochondrial dysfunction during human ageing. PLoS Genet 10, e1004620.
    [38]
    Guerra, F., Kurelac, I., Cormio, A., Zuntini, R., Amato, L.B., Ceccarelli, C., Santini, D., Cormio, G., Fracasso, F., Selvaggi, L., Resta, L., Attimonelli, M., Gadaleta, M.N., Gasparre, G., 2011. Placing mitochondrial DNA mutations within the progression model of type I endometrial carcinoma. Hum Mol Genet 20, 2394-2405.
    [39]
    Guerra, F., Perrone, A.M., Kurelac, I., Santini, D., Ceccarelli, C., Cricca, M., Zamagni, C., De Iaco, P., Gasparre, G., 2012. Mitochondrial DNA mutation in serous ovarian cancer: implications for mitochondria-coded genes in chemoresistance. J Clin Oncol 30, e373-378.
    [40]
    Guo, Y., Li, J., Li, C.I., Shyr, Y., Samuels, D.C., 2013. MitoSeek: extracting mitochondria information and performing high-throughput mitochondria sequencing analysis. Bioinformatics 29, 1210-1211.
    [41]
    Hashimoto, M., Bacman, S.R., Peralta, S., Falk, M.J., Chomyn, A., Chan, D.C., Williams, S.L., Moraes, C.T., 2015. MitoTALEN: a general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases. Mol Ther 23, 1592-1599.
    [42]
    He, Y., Wu, J., Dressman, D.C., Iacobuzio-Donahue, C., Markowitz, S.D., Velculescu, V.E., Diaz, L.A., Jr., Kinzler, K.W., Vogelstein, B., Papadopoulos, N., 2010. Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 464, 610-614.
    [43]
    Hopkins, J.F., Sabelnykova, V.Y., Weischenfeldt, J., Simon, R., Aguiar, J.A., Alkallas, R., Heisler, L.E., Zhang, J., Watson, J.D., Chua, M.L.K., Fraser, M., Favero, F., Lawerenz, C., Plass, C., Sauter, G., McPherson, J.D., van der Kwast, T., Korbel, J., Schlomm, T., Bristow, R.G., Boutros, P.C., 2017. Mitochondrial mutations drive prostate cancer aggression. Nat Commun 8, 656.
    [44]
    Hornig-Do, H.T., Gunther, G., Bust, M., Lehnartz, P., Bosio, A., Wiesner, R.J., 2009. Isolation of functional pure mitochondria by superparamagnetic microbeads. Anal Biochem 389, 1-5.
    [45]
    Horton, T.M., Petros, J.A., Heddi, A., Shoffner, J., Kaufman, A.E., Graham, S.D., Jr., Gramlich, T., Wallace, D.C., 1996. Novel mitochondrial DNA deletion found in a renal cell carcinoma. Genes Chromosomes Cancer 15, 95-101.
    [46]
    Ishiya, K., Ueda, S., 2017. MitoSuite: a graphical tool for human mitochondrial genome profiling in massive parallel sequencing. PeerJ 5, e3406.
    [47]
    Isidoro, A., Martinez, M., Fernandez, P.L., Ortega, A.D., Santamaria, G., Chamorro, M., Reed, J.C., Cuezva, J.M., 2004. Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. Biochem J 378, 17-20.
    [48]
    Jakupciak, J.P., Maragh, S., Markowitz, M.E., Greenberg, A.K., Hoque, M.O., Maitra, A., Barker, P.E., Wagner, P.D., Rom, W.N., Srivastava, S., Sidransky, D., O'Connell, C.D., 2008. Performance of mitochondrial DNA mutations detecting early stage cancer. BMC Cancer 8, 285.
    [49]
    Jimenez-Morales, S., Perez-Amado, C.J., Langley, E., Hidalgo-Miranda, A., 2018. Overview of mitochondrial germline variants and mutations in human disease: Focus on breast cancer (Review). Int J Oncol 53, 923-936.
    [50]
    Jones, J.B., Song, J.J., Hempen, P.M., Parmigiani, G., Hruban, R.H., Kern, S.E., 2001. Detection of mitochondrial DNA mutations in pancreatic cancer offers a "mass"-ive advantage over detection of nuclear DNA mutations. Cancer Res 61, 1299-1304.
    [51]
    Ju, Y.S., Alexandrov, L.B., Gerstung, M., Martincorena, I., Nik-Zainal, S., Ramakrishna, M., Davies, H.R., Papaemmanuil, E., Gundem, G., Shlien, A., Bolli, N., Behjati, S., Tarpey, P.S., Nangalia, J., Massie, C.E., Butler, A.P., Teague, J.W., Vassiliou, G.S., Green, A.R., Du, M.Q., Unnikrishnan, A., Pimanda, J.E., Teh, B.T., Munshi, N., Greaves, M., Vyas, P., El-Naggar, A.K., Santarius, T., Collins, V.P., Grundy, R., Taylor, J.A., Hayes, D.N., Malkin, D., Group, I.B.C., Group, I.C.M.D., Group, I.P.C., Foster, C.S., Warren, A.Y., Whitaker, H.C., Brewer, D., Eeles, R., Cooper, C., Neal, D., Visakorpi, T., Isaacs, W.B., Bova, G.S., Flanagan, A.M., Futreal, P.A., Lynch, A.G., Chinnery, P.F., McDermott, U., Stratton, M.R., Campbell, P.J., 2014. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. eLife 3, e02935.
    [52]
    Ju, Y.S., Tubio, J.M., Mifsud, W., Fu, B., Davies, H.R., Ramakrishna, M., Li, Y., Yates, L., Gundem, G., Tarpey, P.S., Behjati, S., Papaemmanuil, E., Martin, S., Fullam, A., Gerstung, M., Group, I.P.C.W., Group, I.B.C.W., Group, I.B.C.W., Nangalia, J., Green, A.R., Caldas, C., Borg, A., Tutt, A., Lee, M.T., van't Veer, L.J., Tan, B.K., Aparicio, S., Span, P.N., Martens, J.W., Knappskog, S., Vincent-Salomon, A., Borresen-Dale, A.L., Eyfjord, J.E., Myklebost, O., Flanagan, A.M., Foster, C., Neal, D.E., Cooper, C., Eeles, R., Bova, S.G., Lakhani, S.R., Desmedt, C., Thomas, G., Richardson, A.L., Purdie, C.A., Thompson, A.M., McDermott, U., Yang, F., Nik-Zainal, S., Campbell, P.J., Stratton, M.R., 2015. Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells. Genome Res 25, 814-824.
    [53]
    Kenny, T.C., Hart, P., Ragazzi, M., Sersinghe, M., Chipuk, J., Sagar, M.A.K., Eliceiri, K.W., LaFramboise, T., Grandhi, S., Santos, J., Riar, A.K., Papa, L., D'Aurello, M., Manfredi, G., Bonini, M.G., Germain, D., 2017. Selected mitochondrial DNA landscapes activate the SIRT3 axis of the UPR(mt) to promote metastasis. Oncogene 36, 4393-4404.
    [54]
    Kim, M.M., Clinger, J.D., Masayesva, B.G., Ha, P.K., Zahurak, M.L., Westra, W.H., Califano, J.A., 2004. Mitochondrial DNA quantity increases with histopathologic grade in premalignant and malignant head and neck lesions. Clin Cancer Res 10, 8512-8515.
    [55]
    Kloss-Brandstatter, A., Schafer, G., Erhart, G., Huttenhofer, A., Coassin, S., Seifarth, C., Summerer, M., Bektic, J., Klocker, H., Kronenberg, F., 2010. Somatic mutations throughout the entire mitochondrial genome are associated with elevated PSA levels in prostate cancer patients. Am J Hum Genet 87, 802-812.
    [56]
    Kloss-Brandstatter, A., Weissensteiner, H., Erhart, G., Schafer, G., Forer, L., Schonherr, S., Pacher, D., Seifarth, C., Stockl, A., Fendt, L., Sottsas, I., Klocker, H., Huck, C.W., Rasse, M., Kronenberg, F., Kloss, F.R., 2015. Validation of Next-Generation Sequencing of Entire Mitochondrial Genomes and the Diversity of Mitochondrial DNA Mutations in Oral Squamous Cell Carcinoma. PLoS One 10, e0135643.
    [57]
    Kohler, C., Radpour, R., Barekati, Z., Asadollahi, R., Bitzer, J., Wight, E., Burki, N., Diesch, C., Holzgreve, W., Zhong, X.Y., 2009. Levels of plasma circulating cell free nuclear and mitochondrial DNA as potential biomarkers for breast tumors. Mol Cancer 8, 105.
    [58]
    Kovac, M., Navas, C., Horswell, S., Salm, M., Bardella, C., Rowan, A., Stares, M., Castro-Giner, F., Fisher, R., de Bruin, E.C., Kovacova, M., Gorman, M., Makino, S., Williams, J., Jaeger, E., Jones, A., Howarth, K., Larkin, J., Pickering, L., Gore, M., Nicol, D.L., Hazell, S., Stamp, G., O'Brien, T., Challacombe, B., Matthews, N., Phillimore, B., Begum, S., Rabinowitz, A., Varela, I., Chandra, A., Horsfield, C., Polson, A., Tran, M., Bhatt, R., Terracciano, L., Eppenberger-Castori, S., Protheroe, A., Maher, E., El Bahrawy, M., Fleming, S., Ratcliffe, P., Heinimann, K., Swanton, C., Tomlinson, I., 2015. Recurrent chromosomal gains and heterogeneous driver mutations characterise papillary renal cancer evolution. Nat Commun 6, 6336.
    [59]
    Kurelac, I., Iommarini, L., Vatrinet, R., Amato, L.B., De Luise, M., Leone, G., Girolimetti, G., Umesh Ganesh, N., Bridgeman, V.L., Ombrato, L., Columbaro, M., Ragazzi, M., Gibellini, L., Sollazzo, M., Feichtinger, R.G., Vidali, S., Baldassarre, M., Foriel, S., Vidone, M., Cossarizza, A., Grifoni, D., Kofler, B., Malanchi, I., Porcelli, A.M., Gasparre, G., 2019. Inducing cancer indolence by targeting mitochondrial Complex I is potentiated by blocking macrophage-mediated adaptive responses. Nat Commun 10, 903.
    [60]
    Larman, T.C., DePalma, S.R., Hadjipanayis, A.G., Cancer Genome Atlas Research, N., Protopopov, A., Zhang, J., Gabriel, S.B., Chin, L., Seidman, C.E., Kucherlapati, R., Seidman, J.G., 2012. Spectrum of somatic mitochondrial mutations in five cancers. Proc Natl Acad Sci U S A 109, 14087-14091.
    [61]
    Li, Y., Beckman, K.B., Caberto, C., Kazma, R., Lum-Jones, A., Haiman, C.A., Le Marchand, L., Stram, D.O., Saxena, R., Cheng, I., 2015. Association of Genes, Pathways, and Haplogroups of the Mitochondrial Genome with the Risk of Colorectal Cancer: The Multiethnic Cohort. PLoS One 10, e0136796.
    [62]
    Lindberg, G.L., Koehler, C.M., Mayfield, J.E., Myers, A.M., Beitz, D.C., 1992. Recovery of mitochondrial DNA from blood leukocytes using detergent lysis. Biochem Genet 30, 27-33.
    [63]
    Mair, R., Mouliere, F., Smith, C.G., Chandrananda, D., Gale, D., Marass, F., Tsui, D.W.Y., Massie, C.E., Wright, A.J., Watts, C., Rosenfeld, N., Brindle, K.M., 2019. Measurement of Plasma Cell-Free Mitochondrial Tumor DNA Improves Detection of Glioblastoma in Patient-Derived Orthotopic Xenograft Models. Cancer Res 79, 220-230.
    [64]
    Mambo, E., Chatterjee, A., Xing, M., Tallini, G., Haugen, B.R., Yeung, S.C., Sukumar, S., Sidransky, D., 2005. Tumor-specific changes in mtDNA content in human cancer. Int J Cancer 116, 920-924.
    [65]
    McMahon, S., LaFramboise, T., 2014. Mutational patterns in the breast cancer mitochondrial genome, with clinical correlates. Carcinogenesis 35, 1046-1054.
    [66]
    Mermel, C.H., Schumacher, S.E., Hill, B., Meyerson, M.L., Beroukhim, R., Getz, G., 2011. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol 12, R41.
    [67]
    Mithani, S.K., Smith, I.M., Zhou, S., Gray, A., Koch, W.M., Maitra, A., Califano, J.A., 2007. Mitochondrial resequencing arrays detect tumor-specific mutations in salivary rinses of patients with head and neck cancer. Clin Cancer Res 13, 7335-7340.
    [68]
    Nakashima-Kamimura, N., Asoh, S., Ishibashi, Y., Mukai, Y., Shidara, Y., Oda, H., Munakata, K., Goto, Y., Ohta, S., 2005. MIDAS/GPP34, a nuclear gene product, regulates total mitochondrial mass in response to mitochondrial dysfunction. J Cell Sci 118, 5357-5367.
    [69]
    Naue, J., Horer, S., Sanger, T., Strobl, C., Hatzer-Grubwieser, P., Parson, W., Lutz-Bonengel, S., 2015. Evidence for frequent and tissue-specific sequence heteroplasmy in human mitochondrial DNA. Mitochondrion 20, 82-94.
    [70]
    Navin, N., Krasnitz, A., Rodgers, L., Cook, K., Meth, J., Kendall, J., Riggs, M., Eberling, Y., Troge, J., Grubor, V., Levy, D., Lundin, P., Maner, S., Zetterberg, A., Hicks, J., Wigler, M., 2010. Inferring tumor progression from genomic heterogeneity. Genome Res 20, 68-80.
    [71]
    Nickel, G.C., Barnholtz-Sloan, J., Gould, M.P., McMahon, S., Cohen, A., Adams, M.D., Guda, K., Cohen, M., Sloan, A.E., LaFramboise, T., 2012. Characterizing mutational heterogeneity in a glioblastoma patient with double recurrence. PLoS One 7, e35262.
    [72]
    Nie, H., Chen, G., He, J., Zhang, F., Li, M., Wang, Q., Zhou, H., Lyu, J., Bai, Y., 2016. Mitochondrial common deletion is elevated in blood of breast cancer patients mediated by oxidative stress. Mitochondrion 26, 104-112.
    [73]
    Nie, H., Shu, H., Vartak, R., Milstein, A.C., Mo, Y., Hu, X., Fang, H., Shen, L., Ding, Z., Lu, J., Bai, Y., 2013. Mitochondrial common deletion, a potential biomarker for cancer occurrence, is selected against in cancer background: a meta-analysis of 38 studies. PLoS One 8, e67953.
    [74]
    Okon, I.S., Zou, M.H., 2015. Mitochondrial ROS and cancer drug resistance: Implications for therapy. Pharmacol Res 100, 170-174.
    [75]
    Patil, V., Cuenin, C., Chung, F., Aguilera, J.R.R., Fernandez-Jimenez, N., Romero-Garmendia, I., Bilbao, J.R., Cahais, V., Rothwell, J., Herceg, Z., 2019. Human mitochondrial DNA is extensively methylated in a non-CpG context. Nucleic Acids Res 47, 10072-10085.
    [76]
    Petros, J.A., Baumann, A.K., Ruiz-Pesini, E., Amin, M.B., Sun, C.Q., Hall, J., Lim, S., Issa, M.M., Flanders, W.D., Hosseini, S.H., Marshall, F.F., Wallace, D.C., 2005. mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci U S A 102, 719-724.
    [77]
    Picard, M., Zhang, J., Hancock, S., Derbeneva, O., Golhar, R., Golik, P., O'Hearn, S., Levy, S., Potluri, P., Lvova, M., Davila, A., Lin, C.S., Perin, J.C., Rappaport, E.F., Hakonarson, H., Trounce, I.A., Procaccio, V., Wallace, D.C., 2014. Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming. Proc Natl Acad Sci U S A 111, E4033-4042.
    [78]
    Picardi, E., Pesole, G., 2012. Mitochondrial genomes gleaned from human whole-exome sequencing. Nat Methods 9, 523-524.
    [79]
    Polyak, K., Li, Y., Zhu, H., Lengauer, C., Willson, J.K., Markowitz, S.D., Trush, M.A., Kinzler, K.W., Vogelstein, B., 1998. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet 20, 291-293.
    [80]
    Quispe-Tintaya, W., White, R.R., Popov, V.N., Vijg, J., Maslov, A.Y., 2013. Fast mitochondrial DNA isolation from mammalian cells for next-generation sequencing. Biotechniques 55, 133-136.
    [81]
    Reznik, E., Miller, M.L., Senbabaoglu, Y., Riaz, N., Sarungbam, J., Tickoo, S.K., Al-Ahmadie, H.A., Lee, W., Seshan, V.E., Hakimi, A.A., Sander, C., 2016. Mitochondrial DNA copy number variation across human cancers. eLife 5, e10769.
    [82]
    Saini, S.K., Mangalhara, K.C., Prakasam, G., Bamezai, R.N.K., 2017. DNA Methyltransferase1 (DNMT1) Isoform3 methylates mitochondrial genome and modulates its biology. Sci Rep 7, 1525.
    [83]
    Salas, A., Yao, Y.G., Macaulay, V., Vega, A., Carracedo, A., Bandelt, H.J., 2005. A critical reassessment of the role of mitochondria in tumorigenesis. PLoS Med 2, e296.
    [84]
    Samuels, D.C., Li, C., Li, B., Song, Z., Torstenson, E., Boyd Clay, H., Rokas, A., Thornton-Wells, T.A., Moore, J.H., Hughes, T.M., Hoffman, R.D., Haines, J.L., Murdock, D.G., Mortlock, D.P., Williams, S.M., 2013. Recurrent tissue-specific mtDNA mutations are common in humans. PLoS Genet 9, e1003929.
    [85]
    Shen, J., Platek, M., Mahasneh, A., Ambrosone, C.B., Zhao, H., 2010. Mitochondrial copy number and risk of breast cancer: a pilot study. Mitochondrion 10, 62-68.
    [86]
    Shidara, Y., Yamagata, K., Kanamori, T., Nakano, K., Kwong, J.Q., Manfredi, G., Oda, H., Ohta, S., 2005. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res 65, 1655-1663.
    [87]
    Stafford, P., Chen-Quin, E.B., 2010. The pattern of natural selection in somatic cancer mutations of human mtDNA. J Hum Genet 55, 605-612.
    [88]
    Stewart, J.B., Alaei-Mahabadi, B., Sabarinathan, R., Samuelsson, T., Gorodkin, J., Gustafsson, C.M., Larsson, E., 2015. Simultaneous DNA and RNA Mapping of Somatic Mitochondrial Mutations across Diverse Human Cancers. PLoS Genet 11, e1005333.
    [89]
    Stewart, J.B., Chinnery, P.F., 2015. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet 16, 530-542.
    [90]
    Tan, D.J., Chang, J., Liu, L.L., Bai, R.K., Wang, Y.F., Yeh, K.T., Wong, L.J., 2006. Significance of somatic mutations and content alteration of mitochondrial DNA in esophageal cancer. BMC Cancer 6, 93.
    [91]
    Thyagarajan, B., Wang, R., Nelson, H., Barcelo, H., Koh, W.P., Yuan, J.M., 2013. Mitochondrial DNA copy number is associated with breast cancer risk. PLoS One 8, e65968.
    [92]
    Tseng, L.M., Yin, P.H., Chi, C.W., Hsu, C.Y., Wu, C.W., Lee, L.M., Wei, Y.H., Lee, H.C., 2006. Mitochondrial DNA mutations and mitochondrial DNA depletion in breast cancer. Genes Chromosomes Cancer 45, 629-638.
    [93]
    van Gisbergen, M.W., Voets, A.M., Starmans, M.H., de Coo, I.F., Yadak, R., Hoffmann, R.F., Boutros, P.C., Smeets, H.J., Dubois, L., Lambin, P., 2015. How do changes in the mtDNA and mitochondrial dysfunction influence cancer and cancer therapy? Challenges, opportunities and models. Mutat Res Rev Mutat Res 764, 16-30.
    [94]
    Vellarikkal, S.K., Dhiman, H., Joshi, K., Hasija, Y., Sivasubbu, S., Scaria, V., 2015. mit-o-matic: a comprehensive computational pipeline for clinical evaluation of mitochondrial variations from next-generation sequencing datasets. Hum Mutat 36, 419-424.
    [95]
    Wan, J.C.M., Massie, C., Garcia-Corbacho, J., Mouliere, F., Brenton, J.D., Caldas, C., Pacey, S., Baird, R., Rosenfeld, N., 2017. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 17, 223-238.
    [96]
    Weerts, M.J.A., Timmermans, E.C., Vossen, R., van Strijp, D., Van den Hout-van Vroonhoven, M., van, I.W.F.J., van der Zaag, P.J., Anvar, S.Y., Sleijfer, S., Martens, J.W.M., 2018. Sensitive detection of mitochondrial DNA variants for analysis of mitochondrial DNA-enriched extracts from frozen tumor tissue. Sci Rep 8, 2261.
    [97]
    Weissensteiner, H., Forer, L., Fuchsberger, C., Schopf, B., Kloss-Brandstatter, A., Specht, G., Kronenberg, F., Schonherr, S., 2016. mtDNA-Server: next-generation sequencing data analysis of human mitochondrial DNA in the cloud. Nucleic Acids Res 44, W64-69.
    [98]
    Wong, L.J., Lueth, M., Li, X.N., Lau, C.C., Vogel, H., 2003. Detection of mitochondrial DNA mutations in the tumor and cerebrospinal fluid of medulloblastoma patients. Cancer Res 63, 3866-3871.
    [99]
    Yao, Y.G., Kong, Q.P., Salas, A., Bandelt, H.J., 2008. Pseudomitochondrial genome haunts disease studies. J Med Genet 45, 769-772.
    [100]
    Ye, C., Shu, X.O., Wen, W., Pierce, L., Courtney, R., Gao, Y.T., Zheng, W., Cai, Q., 2008. Quantitative analysis of mitochondrial DNA 4977-bp deletion in sporadic breast cancer and benign breast diseases. Breast Cancer Res Treat 108, 427-434.
    [101]
    Yin, P.H., Lee, H.C., Chau, G.Y., Wu, Y.T., Li, S.H., Lui, W.Y., Wei, Y.H., Liu, T.Y., Chi, C.W., 2004. Alteration of the copy number and deletion of mitochondrial DNA in human hepatocellular carcinoma. Br J Cancer 90, 2390-2396.
    [102]
    Yu, M., Wan, Y.F., Zou, Q.H., 2012. Cell-free circulating mitochondrial DNA in the serum: a potential non-invasive biomarker for Ewing's sarcoma. Arch Med Res 43, 389-394.
    [103]
    Yu, M., Zhou, Y., Shi, Y., Ning, L., Yang, Y., Wei, X., Zhang, N., Hao, X., Niu, R., 2007. Reduced mitochondrial DNA copy number is correlated with tumor progression and prognosis in Chinese breast cancer patients. IUBMB Life 59, 450-457.
    [104]
    Yusoff, A.A.M., Abdullah, W.S.W., Khair, S., Radzak, S.M.A., 2019. A comprehensive overview of mitochondrial DNA 4977-bp deletion in cancer studies. Oncol Rev 13, 409.
    [105]
    Zachariah, R.R., Schmid, S., Buerki, N., Radpour, R., Holzgreve, W., Zhong, X., 2008. Levels of circulating cell-free nuclear and mitochondrial DNA in benign and malignant ovarian tumors. Obstet Gynecol 112, 843-850.
    [106]
    Zhang, R., Nakahira, K., Choi, A.M.K., Gu, Z., 2019. Heteroplasmy concordance between mitochondrial DNA and RNA. Sci Rep 9, 12942.
    [107]
    Zhidkov, I., Livneh, E.A., Rubin, E., Mishmar, D., 2009. MtDNA mutation pattern in tumors and human evolution are shaped by similar selective constraints. Genome Res 19, 576-580.
    [108]
    Zhidkov, I., Nagar, T., Mishmar, D., Rubin, E., 2011. MitoBamAnnotator: A web-based tool for detecting and annotating heteroplasmy in human mitochondrial DNA sequences. Mitochondrion 11, 924-928.
    [109]
    Zhu, W., Qin, W., Bradley, P., Wessel, A., Puckett, C.L., Sauter, E.R., 2005. Mitochondrial DNA mutations in breast cancer tissue and in matched nipple aspirate fluid. Carcinogenesis 26, 145-152.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures (3)

    Article Metrics

    Article views (171) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return