[1] |
Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., Powell, J.I., Yang, L., Marti, G.E., Moore, T., Hudson, J., Lu, L., Lewis, D.B., Tibshirani, R., Sherlock, G., Chan, W.C., Greiner, T.C., Weisenburger, D.D., Armitage, J.O., Warnke, R., Levy, R., Wilson, W., Grever, M.R., Byrd, J.C., Botstein, D., Brown, P.O., Staudt, L.M., 2000. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503-511.
|
[2] |
Amara, K., Ziadi, S., Hachana, M., Soltani, N., Korbi, S., Trimeche, M., 2010. DNA methyltransferase DNMT3b protein overexpression as a prognostic factor in patients with diffuse large B-cell lymphomas. Cancer Sci. 101, 1722-1730.
|
[3] |
Ammerpohl, O., Haake, A., Pellissery, S., Giefing, M., Richter, J., Balint, B., Kulis, M., Le, J., Bibikova, M., Drexler, H.G., Seifert, M., Shaknovic, R., Korn, B., Kuppers, R., Martin-Subero, J.I., Siebert, R., 2012. Array-based DNA methylation analysis in classical Hodgkin lymphoma reveals new insights into the mechanisms underlying silencing of B cell-specific genes. Leukemia 26, 185-188.
|
[4] |
Arab, K., Karaulanov, E., Musheev, M., Trnka, P., Schafer, A., Grummt, I., Niehrs, C., 2019. GADD45A binds R-loops and recruits TET1 to CpG island promoters. Nat. Genet. 51, 217-223.
|
[5] |
Avery, O.T., MacLeod, C.M., McCarty, M., 1995. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. 1944. Mol. Med. 1, 344-365.
|
[6] |
Barreto, G., Schafer, A., Marhold, J., Stach, D., Swaminathan, S.K., Handa, V., Doderlein, G., Maltry, N., Wu, W., Lyko, F., Niehrs, C., 2007. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445, 671-675.
|
[7] |
Barwick, B.G., Scharer, C.D., Martinez, R.J., Price, M.J., Wein, A.N., Haines, R.R., Bally, A.P.R., Kohlmeier, J.E., Boss, J.M., 2018. B cell activation and plasma cell differentiation are inhibited by de novo DNA methylation. Nat. Commun. 9, 1900.
|
[8] |
Baubec, T., Colombo, D.F., Wirbelauer, C., Schmidt, J., Burger, L., Krebs, A.R., Akalin, A., Schubeler, D., 2015. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520, 243-247.
|
[9] |
Bestor, T., Laudano, A., Mattaliano, R., Ingram, V., 1988. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells: the carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J. Mol. Biol. 203, 971-983.
|
[10] |
Bestor, T.H., 1992. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J. 11, 2611-2617.
|
[11] |
Bestor, T.H., Ingram, V.M., 1983. Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc. Natl. Acad. Sci. 80, 5559-5563.
|
[12] |
Bestor, T.H., Ingram, V.M., 1985. Growth-dependent expression of multiple species of DNA methyltransferase in murine erythroleukemia cells. Proc. Natl. Acad. Sci. U.S.A. 82, 2674-2678.
|
[13] |
Bishop, J.F., Wiernik, P.H., Wesley, M.N., Kaplan, R.S., Diggs, C.H., Barcos, M.P., Sutherland, J.C., 1987. A randomized trial of high dose cyclophosphamide, vincristine, and prednisone plus or minus doxorubicin (CVP versus CAVP) with long-term follow-up in advanced non-Hodgkin’s lymphoma. Leukemia 1, 508-513.
|
[14] |
Brunetti, L., Gundry, M.C., Goodell, M.A., 2017. DNMT3A in Leukemia. Cold Spring Harb. Perspect. Med. 7, a030320.
|
[15] |
Caiado, F., Maia-Silva, D., Jardim, C., Schmolka, N., Carvalho, T., Reforco, C., Faria, R., Kolundzija, B., Simoes, A.E., Baubec, T., Vakoc, C.R., da Silva, M.G., Manz, M.G., Schumacher, T.N., Norell, H., Silva-Santos, B., 2019. Lineage tracing of acute myeloid leukemia reveals the impact of hypomethylating agents on chemoresistance selection. Nat. Commun. 10.
|
[16] |
Carrier, F., Georgel, P.T., Pourquier, P., Blake, M., Kontny, H.U., Antinore, M.J., Gariboldi, M., Myers, T.G., Weinstein, J.N., Pommier, Y., Fornace, A.J., 1999. Gadd45, a p53-responsive stress protein, modifies DNA accessibility on damaged chromatin. Mol. Cell. Biol. 19, 1673-1685.
|
[17] |
Chambwe, N., Kormaksson, M., Geng, H., De, S., Michor, F., Johnson, N.A., Morin, R.D., Scott, D.W., Godley, L.A., Gascoyne, R.D., Melnick, A., Campagne, F., Shaknovich, R., 2014a. Variability in DNA methylation defines novel epigenetic subgroups of DLBCL associated with different clinical outcomes. Blood 123, 1699-1708.
|
[18] |
Chiappinelli, K.B., Strissel, P.L., Desrichard, A., Li, H., Henke, C., Akman, B., Hein, A., Rote, N.S., Cope, L.M., Snyder, A., Makarov, V., Buhu, S., Slamon, D.J., Wolchok, J.D., Pardoll, D.M., Beckmann, M.W., Zahnow, C.A., Merghoub, T., Chan, T.A., Baylin, S.B., Strick, R., 2015. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974-986.
|
[19] |
Christman, J.K., 2002. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21, 5483-5495.
|
[20] |
Clozel, T., Yang, S., Elstrom, R.L., Tam, W., Martin, P., Kormaksson, M., Banerjee, S., Vasanthakumar, A., Culjkovic, B., Scott, D.W., Wyman, S., Leser, M., Shaknovich, R., Chadburn, A., Tabbo, F., Godley, L.A., Gascoyne, R.D., Borden, K.L., Inghirami, G., Leonard, J.P., Melnick, A., Cerchietti, L., 2013. Mechanism-based epigenetic chemosensitization therapy of diffuse large B-cell lymphoma. Cancer Discov. 3, 1002-1019.
|
[21] |
De, S., Shaknovich, R., Riester, M., Elemento, O., Geng, H., Kormaksson, M., Jiang, Y., Woolcock, B., Johnson, N., Polo, J.M., Cerchietti, L., Gascoyne, R.D., Melnick, A., Michor, F., 2013. Aberration in DNA methylation in B-cell lymphomas has a complex origin and increases with disease severity. PLoS Genet. 9.
|
[22] |
Di Croce, L., 2002. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295, 1079-1082.
|
[23] |
Ding, L., Ley, T.J., Larson, D.E., Miller, C.A., Koboldt, D.C., Welch, J.S., Ritchey, J.K., Young, M.A., Lamprecht, T., McLellan, M.D., McMichael, J.F., Wallis, J.W., Lu, C., Shen, D., Harris, C.C., Dooling, D.J., Fulton, R.S., Fulton, L.L., Chen, K., Schmidt, H., Kalicki-Veizer, J., Magrini, V.J., Cook, L., McGrath, S.D., Vickery, T.L., Wendl, M.C., Heath, S., Watson, M.A., Link, D.C., Tomasson, M.H., Shannon, W.D., Payton, J.E., Kulkarni, S., Westervelt, P., Walter, M.J., Graubert, T.A., Mardis, E.R., Wilson, R.K., DiPersio, J.F., 2012. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506-510.
|
[24] |
Dominguez, P.M., Teater, M., Chambwe, N., Kormaksson, M., Redmond, D., Ishii, J., Vuong, B., Chaudhuri, J., Melnick, A., Vasanthakumar, A., Godley, L.A., Papavasiliou, F.N., Elemento, O., Shaknovich, R., 2015. DNA methylation dynamics of germinal center B cells are mediated by AID. Cell Rep. 12, 2086-2098.
|
[25] |
Dong, A., 2001. Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Res. 29, 439-448.
|
[26] |
Duy, C., Teater, M., Garrett-Bakelman, F.E., Lee, T.C., Meydan, C., Glass, J.L., Li, M., Hellmuth, J.C., Mohammad, H.P., Smitheman, K.N., Shih, A.H., Abdel-Wahab, O., Tallman, M.S., Guzman, M.L., Muench, D., Grimes, H.L., Roboz, G.J., Kruger, R.G., Creasy, C.L., Paietta, E.M., Levine, R.L., Carroll, M., Melnick, A.M., 2019. Rational targeting of cooperating layers of the epigenome yields enhanced therapeutic efficacy against AML. Cancer Discov. 9, 872-889.
|
[27] |
Eads, C.A., Nickel, A.E., Laird, P.W., 2002. Complete genetic suppression of polyp formation and reduction of CpG-island hypermethylation in ApcMin/+ Dnmt1-hypomorphic mice 5. 62, 1296-1299.
|
[28] |
Edwards, J.R., Yarychkivska, O., Boulard, M., Bestor, T.H., 2017. DNA methylation and DNA methyltransferases. Epigenet. Chromatin 10.
|
[29] |
El Marabti, E., Younis, I., 2018. The Cancer Spliceome: Reprograming of Alternative Splicing in Cancer. Front. Mol. Biosci. 5.
|
[30] |
Fried, I., Bodner, C., Pichler, M.M., Lind, K., Beham-Schmid, C., Quehenberger, F., Sperr, W.R., Linkesch, W., Sill, H., Wolfler, A., 2012. Frequency, onset and clinical impact of somatic DNMT3A mutations in therapy-related and secondary acute myeloid leukemia. Haematologica 97, 246-250.
|
[31] |
Frommer, M., McDonald, L.E., Millar, D.S., Collis, C.M., Watt, F., Grigg, G.W., Molloy, P.L., Paul, C.L., 1992. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. U.S.A. 89, 1827-1831.
|
[32] |
Fuks, F., Burgers, W.A., Brehm, A., Hughes-Davies, L., Kouzarides, T., 2000. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat. Genet. 24, 88-91.
|
[33] |
Fuks, F., 2001. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J. 20, 2536-2544.
|
[34] |
Gams, R.A., Rainey, M., Dandy, M., Bartolucci, A.A., Silberman, H., Omura, G., 1985. Phase III study of BCOP v CHOP in unfavorable categories of malignant lymphoma: a Southeastern Cancer Study Group trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 3, 1188-1195.
|
[35] |
Goll, M.G., Kirpekar, F., Maggert, K.A., Yoder, J.A., Hsieh, C.-L., Zhang, X., Golic, K.G., Jacobsen, S.E., Bestor, T.H., 2006. Methylation of tRNAAsp by the DNA Methyltransferase Homolog Dnmt2. Science 311, 395-398.
|
[36] |
Gordon, L.I., Harrington, D., Andersen, J., Colgan, J., Glick, J., Neiman, R., Mann, R., Resnick, G.D., Barcos, M., Gottlieb, A., 1992. Comparison of a second-generation combination chemotherapeutic regimen (m-BACOD) with a standard regimen (CHOP) for advanced diffuse non-Hodgkin’s lymphoma. N. Engl. J. Med. 327, 1342-1349.
|
[37] |
Grossmann, V., Haferlach, C., Weissmann, S., Roller, A., Schindela, S., Poetzinger, F., Stadler, K., Bellos, F., Kern, W., Haferlach, T., Schnittger, S., Kohlmann, A., 2013. The molecular profile of adult T-cell acute lymphoblastic leukemia: Mutations in RUNX1 and DNMT3A are associated with poor prognosis in T-ALL. Genes Chromosomes Cancer 52, 410-422.
|
[38] |
Gruenbaum, Y., Cedar, H., Razin, A., 1982. Substrate and sequence specificity of a eukaryotic DNA methylase. Nature 295, 620-622.
|
[39] |
Guo, X., Wang, L., Li, J., Ding, Z., Xiao, J., Yin, X., He, S., Shi, P., Dong, L., Li, G., Tian, C., Wang, J., Cong, Y., Xu, Y., 2015. Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature 517, 640-644.
|
[40] |
Ha, K., Lee, G.E., Palii, S.S., Brown, K.D., Takeda, Y., Liu, K., Bhalla, K.N., Robertson, K.D., 2011. Rapid and transient recruitment of DNMT1 to DNA double-strand breaks is mediated by its interaction with multiple components of the DNA damage response machinery. Hum. Mol. Genet. 20, 126-140.
|
[41] |
Haney, S.L., Upchurch, G.M., Opavska, J., Klinkebiel, D., Hlady, R.A., Roy, S., Dutta, S., Datta, K., Opavsky, R., 2016. Dnmt3a is a haploinsufficient tumor suppressor in CD8+ peripheral T cell lymphoma. PLoS Genet. 12, e1006334.
|
[42] |
Hata, K., Okano, M., Lei, H. and Li, E., 2002. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development. 129, 983-1993.
|
[43] |
Hermann, A., Schmitt, S., Jeltsch, A., 2003. The human Dnmt2 has residual DNA-(cytosine-C5) methyltransferase activity. J. Biol. Chem. 278, 31717-31721.
|
[44] |
Hollander, M.C., Fornace, A.J., 2002. Genomic instability, centrosome amplification, cell cycle checkpoints and Gadd45a. Oncogene 21, 6228-6233.
|
[45] |
Holz-Schietinger, C., Matje, D.M., Harrison, M.F., Reich, N.O., 2011. Oligomerization of DNMT3A controls the mechanism of de Novo DNA methylation. J. Biol. Chem. 286, 41479-41488.
|
[46] |
Holz-Schietinger, C., Matje, D.M., Reich, N.O., 2012. Mutations in DNA Methyltransferase (DNMT3A) Observed in acute myeloid leukemia patients disrupt processive methylation. J. Biol. Chem. 287, 30941-30951.
|
[47] |
Jeltsch, A., Jurkowska, R.Z., 2016. Allosteric control of mammalian DNA methyltransferases - a new regulatory paradigm. Nucleic Acids Res. 44, 8556-8575.
|
[48] |
Jia, D., Jurkowska, R.Z., Zhang, X., Jeltsch, A., Cheng, X., 2007a. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449, 248.
|
[49] |
Jia, D., Jurkowska, R.Z., Zhang, X., Jeltsch, A., Cheng, X., 2007b. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449, 248-251.
|
[50] |
Jones, S.E., Grozea, P.N., Metz, E.N., Haut, A., Stephens, R.L., Morrison, F.S., Butler, J.J., Byrne, G.E., Moon, T.E., Fisher, R., Haskins, C.L., Coltman, C.A., 1979. Superiority of adriamycin-containing combination chemotherapy in the treatment of diffuse lymphoma: a Southwest Oncology Group study. Cancer 43, 417-425.
|
[51] |
Jones, P.A., Ohtani, H., Chakravarthy, A., De Carvalho, D.D., 2019. Epigenetic therapy in immune-oncology. Nat. Rev. Cancer 19, 151-161.
|
[52] |
Jurkowska, R.Z., Rajavelu, A., Anspach, N., Urbanke, C., Jankevicius, G., Ragozin, S., Nellen, W., Jeltsch, A., 2011. Oligomerization and binding of the Dnmt3a DNA methyltransferase to parallel DNA molecules: heterochromatic localization and role of Dnmt3L. J. Biol. Chem. 286, 24200-24207.
|
[53] |
Koya, J., Kataoka, K., Sato, T., Bando, M., Kato, Y., Tsuruta-Kishino, T., Kobayashi, H., Narukawa, K., Miyoshi, H., Shirahige, K., Kurokawa, M., 2016. DNMT3A R882 mutants interact with polycomb proteins to block haematopoietic stem and leukaemic cell differentiation. Nat. Commun. 7.
|
[54] |
Kreso, A., O’Brien, C.A., Galen, P. van, Gan, O.I., Notta, F., Brown, A.M.K., Ng, K., Ma, J., Wienholds, E., Dunant, C., Pollett, A., Gallinger, S., McPherson, J., Mullighan, C.G., Shibata, D., Dick, J.E., 2013. Variable clonal repopulation dynamics Influence chemotherapy response in colorectal cancer. Science 339, 543-548.
|
[55] |
Kuppers, R., 2009. The biology of Hodgkin’s lymphoma. Nat. Rev. Cancer 9, 15-27.
|
[56] |
Lai, A.Y., Mav, D., Shah, R., Grimm, S.A., Phadke, D., Hatzi, K., Melnick, A., Geigerman, C., Sobol, S.E., Jaye, D.L., Wade, P.A., 2013. DNA methylation profiling in human B cells reveals immune regulatory elements and epigenetic plasticity at Alu elements during B-cell activation. Genome Res. 23, 2030-2041.
|
[57] |
Landau, D.A., Clement, K., Ziller, M.J., Boyle, P., Fan, J., Gu, H., Stevenson, K., Sougnez, C., Wang, L., Li, S., Kotliar, D., Zhang, W., Ghandi, M., Garraway, L., Fernandes, S.M., Livak, K.J., Gabriel, S., Gnirke, A., Lander, E.S., Brown, J.R., Neuberg, D., Kharchenko, P.V., Hacohen, N., Getz, G., Meissner, A., Wu, C.J., 2014. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell 26, 813-825.
|
[58] |
Lee, B., Morano, A., Porcellini, A., Muller, M.T., 2012. GADD45α inhibition of DNMT1 dependent DNA methylation during homology directed DNA repair. Nucleic Acids Res. 40, 2481-2493.
|
[59] |
Lei, H., Oh, S.P., Okano, M., Juttermann, R., Goss, K.A., Jaenisch, R., Li, E., 1996. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122, 3195-3205.
|
[60] |
Lenz, G., Staudt, L.M., 2010. Aggressive lymphomas. N. Engl. J. Med. 362, 1417-1429.
|
[61] |
Leonard, S., Wei, W., Anderton, J., Vockerodt, M., Rowe, M., Murray, P.G., Woodman, C.B., 2011. Epigenetic and transcriptional changes which follow epstein-barr virus infection of germinal center b cells and their relevance to the pathogenesis of hodgkin’s lymphoma. J. Virol. 85, 9568-9577.
|
[62] |
Leonhardt, H., Page, A.W., Weier, H.-U., Bestor, T.H., 1992. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71, 865-873.
|
[63] |
Lev Maor, G., Yearim, A., Ast, G., 2015. The alternative role of DNA methylation in splicing regulation. Trends Genet. 31, 274-280.
|
[64] |
Ley, T.J., Ding, L., Walter, M.J., McLellan, M.D., Lamprecht, T., Larson, D.E., Kandoth, C., Payton, J.E., Baty, J., Welch, J., Harris, C.C., Lichti, C.F., Townsend, R.R., Fulton, R.S., Dooling, D.J., Koboldt, D.C., Schmidt, H., Zhang, Q., Osborne, J.R., Lin, L., O’Laughlin, M., McMichael, J.F., Delehaunty, K.D., McGrath, S.D., Fulton, L.A., Magrini, V.J., Vickery, T.L., Hundal, J., Cook, L.L., Conyers, J.J., Swift, G.W., Reed, J.P., Alldredge, P.A., Wylie, T., Walker, J., Kalicki, J., Watson, M.A., Heath, S., Shannon, W.D., Varghese, N., Nagarajan, R., Westervelt, P., Tomasson, M.H., Link, D.C., Graubert, T.A., DiPersio, J.F., Mardis, E.R., Wilson, R.K., 2010. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 363, 2424-2433.
|
[65] |
Li, E., Bestor, T.H., Jaenisch, R., 1992. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915-926.
|
[66] |
Li, S., Garrett-Bakelman, F.E., Chung, S.S., Sanders, M.A., Hricik, T., Rapaport, F., Patel, J., Dillon, R., Vijay, P., Brown, A.L., Perl, A.E., Cannon, J., Bullinger, L., Luger, S., Becker, M., Lewis, I.D., To, L.B., Delwel, R., Lowenberg, B., Dohner, H., Dohner, K., Guzman, M.L., Hassane, D.C., Roboz, G.J., Grimwade, D., Valk, P.J.M., D’Andrea, R.J., Carroll, M., Park, C.Y., Neuberg, D., Levine, R., Melnick, A.M., Mason, C.E., 2016. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat. Med. 22, 792-799.
|
[67] |
Liu, M., Ohtani, H., Zhou, W., OErskov, A.D., Charlet, J., Zhang, Y.W., Shen, H., Baylin, S.B., Liang, G., Groenbaek, K., Jones, P.A., 2016. Vitamin C increases viral mimicry induced by 5-aza-2′-deoxycytidine. Proc. Natl. Acad. Sci. 113, 10238-10244.
|
[68] |
Lyko, F., 2018. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 19, 81-92.
|
[69] |
Maes, K., De Smedt, E., Lemaire, M., De Raeve, H., Menu, E., Van Valckenborgh, E., McClue, S., Vanderkerken, K., De Bruyne, E., 2014. The role of DNA damage and repair in decitabine-mediated apoptosis in multiple myeloma. Oncotarget 5.
|
[70] |
Manoharan, A., Roure, C.D., Rolink, A.G., Matthias, P., 2015. De novo DNA methyltransferases Dnmt3a and Dnmt3b regulate the onset of Igκ light chain rearrangement during early B-cell development. Eur. J. Immunol. 45, 2343-2355.
|
[71] |
McCarty, M., Avery, O.T., 1946. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J. Exp. Med. 83, 89-96.
|
[72] |
Meissner, A., 2005. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 33, 5868-5877.
|
[73] |
Molavi, O., Wang, P., Zak, Z., Gelebart, P., Belch, A., Lai, R., 2013. Gene methylation and silencing of SOCS3 in mantle cell lymphoma. Br. J. Haematol. 161, 348-356.
|
[74] |
Momparler, R.L., 2005. Epigenetic therapy of cancer with 5-Aza-2′-deoxycytidine (decitabine). Semin. Oncol. 32, 443-451.
|
[75] |
Moore, L.D., Le, T., Fan, G., 2013. DNA methylation and its basic function. Neuropsychopharmacology 38, 23-38.
|
[76] |
Negrotto, S., Ng, K.P., Jankowska, A.M., Bodo, J., Gopalan, B., Guinta, K., Mulloy, J.C., Hsi, E., Maciejewski, J., Saunthararajah, Y., 2012. CpG methylation patterns and decitabine treatment response in acute myeloid leukemia cells and normal hematopoietic precursors. Leukemia 26, 244-254.
|
[77] |
Okano, M., Bell, D.W., Haber, D.A., Li, E., 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247-257.
|
[78] |
Okano, M., Xie, S., Li, E., 1998. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet. 19, 219-220.
|
[79] |
Palii, S.S., Van Emburgh, B.O., Sankpal, U.T., Brown, K.D., Robertson, K.D., 2008. DNA methylation inhibitor 5-Aza-2’-Deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by Dna methyltransferases 1 and 3B. Mol. Cell. Biol. 28, 752-771.
|
[80] |
Paronetto, M.P., Passacantilli, I., Sette, C., 2016. Alternative splicing and cell survival: from tissue homeostasis to disease. Cell Death Differ. 23, 1919-1929.
|
[81] |
Poole, C.J., Zheng, W., Lodh, A., Yevtodiyenko, A., Liefwalker, D., Li, H., Felsher, D.W., Riggelen, J. van, 2017. DNMT3B overexpression contributes to aberrant DNA methylation and MYC-driven tumor maintenance in T-ALL and Burkitt’s lymphoma. Oncotarget 8, 76898-76920.
|
[82] |
Qiu, X., Hother, C., Ralfkiaer, U.M., Soegaard, A., Lu, Q., Workman, C.T., Liang, G., Jones, P.A., Groenbaek, K., 2010. Equitoxic doses of 5-Azacytidine and 5-Aza-2′-deoxycytidine induce diverse immediate and overlapping heritable changes in the transcriptome. PLoS ONE 5, e12994.
|
[83] |
Ren, W., Gao, L., Song, J., 2018. Structural basis of DNMT1 and DNMT3A-mediated DNA methylation. Genes 9, 620.
|
[84] |
Rinaldi, L., Datta, D., Serrat, J., Morey, L., Solanas, G., Avgustinova, A., Blanco, E., Pons, J.I., Matallanas, D., Von Kriegsheim, A., Di Croce, L., Benitah, S.A., 2016. Dnmt3a and Dnmt3b associate with enhancers to regulate human epidermal stem cell homeostasis. Cell Stem Cell 19, 491-501.
|
[85] |
Robaina, M.C., Mazzoccoli, L., Arruda, V.O., Reis, F.R. de S., Apa, A.G., de Rezende, L.M.M., Klumb, C.E., 2015. Deregulation of DNMT1, DNMT3B and miR-29s in Burkitt lymphoma suggests novel contribution for disease pathogenesis. Exp. Mol. Pathol. 98, 200-207.
|
[86] |
Roller, A., Grossmann, V., Bacher, U., Poetzinger, F., Weissmann, S., Nadarajah, N., Boeck, L., Kern, W., Haferlach, C., Schnittger, S., Haferlach, T., Kohlmann, A., 2013. Landmark analysis of DNMT3A mutations in hematological malignancies. Leukemia 27, 1573-1578.
|
[87] |
Roulois, D., Loo Yau, H., Singhania, R., Wang, Y., Danesh, A., Shen, S.Y., Han, H., Liang, G., Jones, P.A., Pugh, T.J., O’Brien, C., De Carvalho, D.D., 2015. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961-973.
|
[88] |
Rui, L., Schmitz, R., Ceribelli, M., Staudt, L.M., 2011. Malignant pirates of the immune system. Nat. Immunol. 12, 933-940.
|
[89] |
Russler-Germain, D.A., Spencer, D.H., Young, M.A., Lamprecht, T.L., Miller, C.A., Fulton, R., Meyer, M.R., Erdmann-gilmore, p., townsend, r.r., wilson, r.k., ley, t.j., 2014. The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell 25, 442-454.
|
[90] |
Sandoval, J.E., Huang, Y.-H., Muise, A., Goodell, M.A., Reich, N.O., 2019. Mutations in the DNMT3A DNA methyltransferase in acute myeloid leukemia patients cause both loss and gain of function and differential regulation by protein partners. J. Biol. Chem. 294, 4898–4910.
|
[91] |
Schubert, H.L., Blumenthal, R.M., Cheng, X., 2003. Many paths to methyltransfer: a chronicle of convergence. Trends Biochem. Sci. 28, 329-335.
|
[92] |
Scott, S.A., Dong, W.-F., Ichinohasama, R., Hirsch, C., Sheridan, D., Sanche, S.E., Geyer, C.R., DeCoteau, J.F., 2006. 5-Aza-2′-deoxycytidine (decitabine) can relieve p21WAF1 repression in human acute myeloid leukemia by a mechanism involving release of histone deacetylase 1 (HDAC1) without requiring p21WAF1 promoter demethylation. Leuk. Res. 30, 69-76.
|
[93] |
Shaknovich, R., Cerchietti, L., Tsikitas, L., Kormaksson, M., De, S., Figueroa, M.E., Ballon, G., Yang, S.N., Weinhold, N., Reimers, M., Clozel, T., Luttrop, K., Ekstrom, T.J., Frank, J., Vasanthakumar, A., Godley, L.A., Michor, F., Elemento, O., Melnick, A., 2011. DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation. Blood 118, 3559-3569.
|
[94] |
Spencer, S.L., Gaudet, S., Albeck, J.G., Burke, J.M., Sorger, P.K., 2009. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459, 428-432.
|
[95] |
Stelling, A., Wu, C.-T., Bertram, K., Hashwah, H., Theocharides, A.P.A., Manz, M.G., Tzankov, A., Muller, A., 2019. Pharmacological DNA demethylation restores SMAD1 expression and tumor suppressive signaling in diffuse large B-cell lymphoma. Blood Adv. 3, 3020-3032.
|
[96] |
Suzuki, M., Yamada, T., Kihara-Negishi, F., Sakurai, T., Hara, E., Tenen, D.G., Hozumi, N., Oikawa, T., 2006. Site-specific DNA methylation by a complex of PU.1 and Dnmt3a/b. Oncogene 25, 2477-2488.
|
[97] |
Swerev, T.M., Wirth, T., Ushmorov, A., 2017. Activation of oncogenic pathways in classical Hodgkin lymphoma by decitabine: A rationale for combination with small molecular weight inhibitors. Int. J. Oncol. 50, 555-566.
|
[98] |
Tamm, I., Wagner, M., Schmelz, K., 2005. Decitabine activates specific caspases downstream of p73 in myeloid leukemia. Ann. Hematol. 84, 47-53.
|
[99] |
Teater, M., Dominguez, P.M., Redmond, D., Chen, Z., Ennishi, D., Scott, D.W., Cimmino, L., Ghione, P., Chaudhuri, J., Gascoyne, R.D., Aifantis, I., Inghirami, G., Elemento, O., Melnick, A., Shaknovich, R., 2018. AICDA drives epigenetic heterogeneity and accelerates germinal center-derived lymphomagenesis. Nat. Commun. 9.
|
[100] |
Wakita, S., Yamaguchi, H., Omori, I., Terada, K., Ueda, T., Manabe, E., Kurosawa, S., Iida, S., Ibaraki, T., Sato, Y., Todoroki, T., Hirakawa, T., Ryotokuji, T., Arai, K., Kitano, T., Mitamura, Y., Kosaka, F., Dan, K., Inokuchi, K., 2013. Mutations of the epigenetics-modifying gene (DNMT3a, TET2, IDH1/2) at diagnosis may induce FLT3-ITD at relapse in de novo acute myeloid leukemia. Leukemia 27, 1044-1052.
|
[101] |
Wang, B.-D., Lee, N.H., 2018. Aberrant RNA splicing in cancer and drug resistance. Cancers 10, 458.
|
[102] |
Weber, J., Salgaller, M., Samid, D., Johnson, B., Herlyn, M., Lassam, N., Treisman, J., Rosenberg, S.A., 1994. Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-Aza-2’-deoxycytidine 54, 1766-1771.
|
[103] |
Webster, K.E., O’Bryan, M.K., Fletcher, S., Crewther, P.E., Aapola, U., Craig, J., Harrison, D.K., Aung, H., Phutikanit, N., Lyle, R., Meachem, S.J., Antonarakis, S.E., de Kretser, D.M., Hedger, M.P., Peterson, P., Carroll, B.J., Scott, H.S., 2005. Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proc. Natl. Acad. Sci. 102, 4068-4073.
|
[104] |
Weinberg, D.N., Papillon-Cavanagh, S., Chen, H., Yue, Y., Chen, X., Rajagopalan, K.N., Horth, C., McGuire, J.T., Xu, X., Nikbakht, H., Lemiesz, A.E., Marchione, D.M., Marunde, M.R., Meiners, M.J., Cheek, M.A., Keogh, M.-C., Bareke, E., Djedid, A., Harutyunyan, A.S., Jabado, N., Garcia, B.A., Li, H., Allis, C.D., Majewski, J., Lu, C., 2019. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 573, 281-286.
|
[105] |
Xie, Y., Pittaluga, S., Jaffe, E.S., 2015. The histological classification of diffuse large B-cell lymphomas. Semin. Hematol. 52, 57-66.
|
[106] |
Yang, L., Rau, R., Goodell, M.A., 2015. DNMT3A in haematological malignancies. Nat. Rev. Cancer 15, 152-165.
|
[107] |
Yang, X., Han, H., De Carvalho, D.D., Lay, F.D., Jones, P.A., Liang, G., 2014. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 26, 577-590.
|
[108] |
Yu, J., Qin, B., Moyer, A.M., Nowsheen, S., Liu, T., Qin, S., Zhuang, Y., Liu, D., Lu, S.W., Kalari, K.R., Visscher, D.W., Copland, J.A., McLaughlin, S.A., Moreno-Aspitia, A., Northfelt, D.W., Gray, R.J., Lou, Z., Suman, V.J., Weinshilboum, R., Boughey, J.C., Goetz, M.P., Wang, L., 2018. DNA methyltransferase expression in triple-negative breast cancer predicts sensitivity to decitabine. J. Clin. Invest. 128, 2376-2388.
|
[109] |
Zhang, Q., Wang, H.Y., Marzec, M., Raghunath, P.N., Nagasawa, T., Wasik, M.A., 2005. STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. Proc. Natl. Acad. Sci. 102, 6948-6953.
|
[110] |
Zhang, L., Yao, Y., Zhang, S., Liu, Y., Guo, H., Ahmed, M., Bell, T., Zhang, H., Han, G., Lorence, E., Badillo, M., Zhou, S., Sun, Y., Di Francesco, M.E., Feng, N., Haun, R., Lan, R., Mackintosh, S.G., Mao, X., Song, X., Zhang, J., Pham, L.V., Lorenzi, P.L., Marszalek, J., Heffernan, T., Draetta, G., Jones, P., Futreal, A., Nomie, K., Wang, L., Wang, M., 2019. Metabolic reprogramming toward oxidative phosphorylation identifies a therapeutic target for mantle cell lymphoma. Sci. Transl. Med. 11, eaau1167.
|
[111] |
Zhang, Z., He, Q., Tao, Y., Guo, J., Xu, F., Wu, L.-Y., Zhao, Y.-S., Wu, D., Zhou, L.-Y., Su, J.-Y., Song, L.-X., Xiao, C., Li, X., Chang, C.-K., 2017. Decitabine treatment sensitizes tumor cells to T-cell-mediated cytotoxicity in patients with myelodysplastic syndromes. Am. J. Transl. Res. 9, 454-465.
|
[112] |
Zhao, X., Ren, Y., Lawlor, M., Shah, B.D., Park, P.M.C., Lwin, T., Wang, X., Liu, K., Wang, M., Gao, J., Li, T., Xu, M., Silva, A.S., Lee, K., Zhang, T., Koomen, J.M., Jiang, H., Sudalagunta, P.R., Meads, M.B., Cheng, F., Bi, C., Fu, K., Fan, H., Dalton, W.S., Moscinski, L.C., Shain, K.H., Sotomayor, E.M., Wang, G.G., Gray, N.S., Cleveland, J.L., Qi, J., Tao, J., 2019. BCL2 amplicon loss and transcriptional remodeling drives ABT-199 resistance in B cell lymphoma models. Cancer Cell 35, 752-766.e9.
|
[113] |
Zhu, Z., Lu, X., Jiang, L., Sun, X., Zhou, H., Jia, Z., Zhang, X., Ma, L., 2015. STAT3 signaling pathway is involved in decitabine induced biological phenotype regulation of acute myeloid leukemia cells. Am. J. Transl. Res. 7, 1896-1907.
|