5.9
CiteScore
5.9
Impact Factor
Volume 47 Issue 7
Jul.  2020
Turn off MathJax
Article Contents

DNA methyltransferases in hematological malignancies

doi: 10.1016/j.jgg.2020.04.006
More Information
  • DNA methyltransferases (DNMTs) are an evolutionarily conserved family of DNA methylases, transferring a methyl group onto the fifth carbon of a cytosine residue. The mammalian DNMT family includes three major members that have functional methylation activities, termed DNMT1, DNMT3A, and DNMT3B. DNMT3A and DNMT3B are responsible for methylation establishment, whereas DNMT1 maintains methylation during DNA replication. Accumulating evidence demonstrates that regulation of DNA methylation by DNMTs is critical for normal hematopoiesis. Aberrant DNA methylation due to DNMT dysregulation and mutations is known as an important molecular event of hematological malignancies, such as DNMT3A mutations in acute myeloid leukemia. In this review, we first describe the basic methylation mechanisms of DNMTs and their functions in lymphocyte maturation and differentiation. We then discuss the current understanding of DNA methylation heterogeneity in leukemia and lymphoma to highlight the importance of studying DNA methylation targets. We also discuss DNMT mutations and pathogenic roles in human leukemia and lymphoma. We summarize the recent understanding of how DNMTs interact with transcription factors or cofactors to repress the expression of tumor suppressor genes. Finally, we highlight current clinical studies using DNMT inhibitors for the treatment of these hematological malignancies.
  • loading
  • [1]
    Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., Powell, J.I., Yang, L., Marti, G.E., Moore, T., Hudson, J., Lu, L., Lewis, D.B., Tibshirani, R., Sherlock, G., Chan, W.C., Greiner, T.C., Weisenburger, D.D., Armitage, J.O., Warnke, R., Levy, R., Wilson, W., Grever, M.R., Byrd, J.C., Botstein, D., Brown, P.O., Staudt, L.M., 2000. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503-511.
    [2]
    Amara, K., Ziadi, S., Hachana, M., Soltani, N., Korbi, S., Trimeche, M., 2010. DNA methyltransferase DNMT3b protein overexpression as a prognostic factor in patients with diffuse large B-cell lymphomas. Cancer Sci. 101, 1722-1730.
    [3]
    Ammerpohl, O., Haake, A., Pellissery, S., Giefing, M., Richter, J., Balint, B., Kulis, M., Le, J., Bibikova, M., Drexler, H.G., Seifert, M., Shaknovic, R., Korn, B., Kuppers, R., Martin-Subero, J.I., Siebert, R., 2012. Array-based DNA methylation analysis in classical Hodgkin lymphoma reveals new insights into the mechanisms underlying silencing of B cell-specific genes. Leukemia 26, 185-188.
    [4]
    Arab, K., Karaulanov, E., Musheev, M., Trnka, P., Schafer, A., Grummt, I., Niehrs, C., 2019. GADD45A binds R-loops and recruits TET1 to CpG island promoters. Nat. Genet. 51, 217-223.
    [5]
    Avery, O.T., MacLeod, C.M., McCarty, M., 1995. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. 1944. Mol. Med. 1, 344-365.
    [6]
    Barreto, G., Schafer, A., Marhold, J., Stach, D., Swaminathan, S.K., Handa, V., Doderlein, G., Maltry, N., Wu, W., Lyko, F., Niehrs, C., 2007. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445, 671-675.
    [7]
    Barwick, B.G., Scharer, C.D., Martinez, R.J., Price, M.J., Wein, A.N., Haines, R.R., Bally, A.P.R., Kohlmeier, J.E., Boss, J.M., 2018. B cell activation and plasma cell differentiation are inhibited by de novo DNA methylation. Nat. Commun. 9, 1900.
    [8]
    Baubec, T., Colombo, D.F., Wirbelauer, C., Schmidt, J., Burger, L., Krebs, A.R., Akalin, A., Schubeler, D., 2015. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520, 243-247.
    [9]
    Bestor, T., Laudano, A., Mattaliano, R., Ingram, V., 1988. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells: the carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J. Mol. Biol. 203, 971-983.
    [10]
    Bestor, T.H., 1992. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J. 11, 2611-2617.
    [11]
    Bestor, T.H., Ingram, V.M., 1983. Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc. Natl. Acad. Sci. 80, 5559-5563.
    [12]
    Bestor, T.H., Ingram, V.M., 1985. Growth-dependent expression of multiple species of DNA methyltransferase in murine erythroleukemia cells. Proc. Natl. Acad. Sci. U.S.A. 82, 2674-2678.
    [13]
    Bishop, J.F., Wiernik, P.H., Wesley, M.N., Kaplan, R.S., Diggs, C.H., Barcos, M.P., Sutherland, J.C., 1987. A randomized trial of high dose cyclophosphamide, vincristine, and prednisone plus or minus doxorubicin (CVP versus CAVP) with long-term follow-up in advanced non-Hodgkin’s lymphoma. Leukemia 1, 508-513.
    [14]
    Brunetti, L., Gundry, M.C., Goodell, M.A., 2017. DNMT3A in Leukemia. Cold Spring Harb. Perspect. Med. 7, a030320.
    [15]
    Caiado, F., Maia-Silva, D., Jardim, C., Schmolka, N., Carvalho, T., Reforco, C., Faria, R., Kolundzija, B., Simoes, A.E., Baubec, T., Vakoc, C.R., da Silva, M.G., Manz, M.G., Schumacher, T.N., Norell, H., Silva-Santos, B., 2019. Lineage tracing of acute myeloid leukemia reveals the impact of hypomethylating agents on chemoresistance selection. Nat. Commun. 10.
    [16]
    Carrier, F., Georgel, P.T., Pourquier, P., Blake, M., Kontny, H.U., Antinore, M.J., Gariboldi, M., Myers, T.G., Weinstein, J.N., Pommier, Y., Fornace, A.J., 1999. Gadd45, a p53-responsive stress protein, modifies DNA accessibility on damaged chromatin. Mol. Cell. Biol. 19, 1673-1685.
    [17]
    Chambwe, N., Kormaksson, M., Geng, H., De, S., Michor, F., Johnson, N.A., Morin, R.D., Scott, D.W., Godley, L.A., Gascoyne, R.D., Melnick, A., Campagne, F., Shaknovich, R., 2014a. Variability in DNA methylation defines novel epigenetic subgroups of DLBCL associated with different clinical outcomes. Blood 123, 1699-1708.
    [18]
    Chiappinelli, K.B., Strissel, P.L., Desrichard, A., Li, H., Henke, C., Akman, B., Hein, A., Rote, N.S., Cope, L.M., Snyder, A., Makarov, V., Buhu, S., Slamon, D.J., Wolchok, J.D., Pardoll, D.M., Beckmann, M.W., Zahnow, C.A., Merghoub, T., Chan, T.A., Baylin, S.B., Strick, R., 2015. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974-986.
    [19]
    Christman, J.K., 2002. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21, 5483-5495.
    [20]
    Clozel, T., Yang, S., Elstrom, R.L., Tam, W., Martin, P., Kormaksson, M., Banerjee, S., Vasanthakumar, A., Culjkovic, B., Scott, D.W., Wyman, S., Leser, M., Shaknovich, R., Chadburn, A., Tabbo, F., Godley, L.A., Gascoyne, R.D., Borden, K.L., Inghirami, G., Leonard, J.P., Melnick, A., Cerchietti, L., 2013. Mechanism-based epigenetic chemosensitization therapy of diffuse large B-cell lymphoma. Cancer Discov. 3, 1002-1019.
    [21]
    De, S., Shaknovich, R., Riester, M., Elemento, O., Geng, H., Kormaksson, M., Jiang, Y., Woolcock, B., Johnson, N., Polo, J.M., Cerchietti, L., Gascoyne, R.D., Melnick, A., Michor, F., 2013. Aberration in DNA methylation in B-cell lymphomas has a complex origin and increases with disease severity. PLoS Genet. 9.
    [22]
    Di Croce, L., 2002. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295, 1079-1082.
    [23]
    Ding, L., Ley, T.J., Larson, D.E., Miller, C.A., Koboldt, D.C., Welch, J.S., Ritchey, J.K., Young, M.A., Lamprecht, T., McLellan, M.D., McMichael, J.F., Wallis, J.W., Lu, C., Shen, D., Harris, C.C., Dooling, D.J., Fulton, R.S., Fulton, L.L., Chen, K., Schmidt, H., Kalicki-Veizer, J., Magrini, V.J., Cook, L., McGrath, S.D., Vickery, T.L., Wendl, M.C., Heath, S., Watson, M.A., Link, D.C., Tomasson, M.H., Shannon, W.D., Payton, J.E., Kulkarni, S., Westervelt, P., Walter, M.J., Graubert, T.A., Mardis, E.R., Wilson, R.K., DiPersio, J.F., 2012. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506-510.
    [24]
    Dominguez, P.M., Teater, M., Chambwe, N., Kormaksson, M., Redmond, D., Ishii, J., Vuong, B., Chaudhuri, J., Melnick, A., Vasanthakumar, A., Godley, L.A., Papavasiliou, F.N., Elemento, O., Shaknovich, R., 2015. DNA methylation dynamics of germinal center B cells are mediated by AID. Cell Rep. 12, 2086-2098.
    [25]
    Dong, A., 2001. Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Res. 29, 439-448.
    [26]
    Duy, C., Teater, M., Garrett-Bakelman, F.E., Lee, T.C., Meydan, C., Glass, J.L., Li, M., Hellmuth, J.C., Mohammad, H.P., Smitheman, K.N., Shih, A.H., Abdel-Wahab, O., Tallman, M.S., Guzman, M.L., Muench, D., Grimes, H.L., Roboz, G.J., Kruger, R.G., Creasy, C.L., Paietta, E.M., Levine, R.L., Carroll, M., Melnick, A.M., 2019. Rational targeting of cooperating layers of the epigenome yields enhanced therapeutic efficacy against AML. Cancer Discov. 9, 872-889.
    [27]
    Eads, C.A., Nickel, A.E., Laird, P.W., 2002. Complete genetic suppression of polyp formation and reduction of CpG-island hypermethylation in ApcMin/+ Dnmt1-hypomorphic mice 5. 62, 1296-1299.
    [28]
    Edwards, J.R., Yarychkivska, O., Boulard, M., Bestor, T.H., 2017. DNA methylation and DNA methyltransferases. Epigenet. Chromatin 10.
    [29]
    El Marabti, E., Younis, I., 2018. The Cancer Spliceome: Reprograming of Alternative Splicing in Cancer. Front. Mol. Biosci. 5.
    [30]
    Fried, I., Bodner, C., Pichler, M.M., Lind, K., Beham-Schmid, C., Quehenberger, F., Sperr, W.R., Linkesch, W., Sill, H., Wolfler, A., 2012. Frequency, onset and clinical impact of somatic DNMT3A mutations in therapy-related and secondary acute myeloid leukemia. Haematologica 97, 246-250.
    [31]
    Frommer, M., McDonald, L.E., Millar, D.S., Collis, C.M., Watt, F., Grigg, G.W., Molloy, P.L., Paul, C.L., 1992. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. U.S.A. 89, 1827-1831.
    [32]
    Fuks, F., Burgers, W.A., Brehm, A., Hughes-Davies, L., Kouzarides, T., 2000. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat. Genet. 24, 88-91.
    [33]
    Fuks, F., 2001. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J. 20, 2536-2544.
    [34]
    Gams, R.A., Rainey, M., Dandy, M., Bartolucci, A.A., Silberman, H., Omura, G., 1985. Phase III study of BCOP v CHOP in unfavorable categories of malignant lymphoma: a Southeastern Cancer Study Group trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 3, 1188-1195.
    [35]
    Goll, M.G., Kirpekar, F., Maggert, K.A., Yoder, J.A., Hsieh, C.-L., Zhang, X., Golic, K.G., Jacobsen, S.E., Bestor, T.H., 2006. Methylation of tRNAAsp by the DNA Methyltransferase Homolog Dnmt2. Science 311, 395-398.
    [36]
    Gordon, L.I., Harrington, D., Andersen, J., Colgan, J., Glick, J., Neiman, R., Mann, R., Resnick, G.D., Barcos, M., Gottlieb, A., 1992. Comparison of a second-generation combination chemotherapeutic regimen (m-BACOD) with a standard regimen (CHOP) for advanced diffuse non-Hodgkin’s lymphoma. N. Engl. J. Med. 327, 1342-1349.
    [37]
    Grossmann, V., Haferlach, C., Weissmann, S., Roller, A., Schindela, S., Poetzinger, F., Stadler, K., Bellos, F., Kern, W., Haferlach, T., Schnittger, S., Kohlmann, A., 2013. The molecular profile of adult T-cell acute lymphoblastic leukemia: Mutations in RUNX1 and DNMT3A are associated with poor prognosis in T-ALL. Genes Chromosomes Cancer 52, 410-422.
    [38]
    Gruenbaum, Y., Cedar, H., Razin, A., 1982. Substrate and sequence specificity of a eukaryotic DNA methylase. Nature 295, 620-622.
    [39]
    Guo, X., Wang, L., Li, J., Ding, Z., Xiao, J., Yin, X., He, S., Shi, P., Dong, L., Li, G., Tian, C., Wang, J., Cong, Y., Xu, Y., 2015. Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature 517, 640-644.
    [40]
    Ha, K., Lee, G.E., Palii, S.S., Brown, K.D., Takeda, Y., Liu, K., Bhalla, K.N., Robertson, K.D., 2011. Rapid and transient recruitment of DNMT1 to DNA double-strand breaks is mediated by its interaction with multiple components of the DNA damage response machinery. Hum. Mol. Genet. 20, 126-140.
    [41]
    Haney, S.L., Upchurch, G.M., Opavska, J., Klinkebiel, D., Hlady, R.A., Roy, S., Dutta, S., Datta, K., Opavsky, R., 2016. Dnmt3a is a haploinsufficient tumor suppressor in CD8+ peripheral T cell lymphoma. PLoS Genet. 12, e1006334.
    [42]
    Hata, K., Okano, M., Lei, H. and Li, E., 2002. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development. 129, 983-1993.
    [43]
    Hermann, A., Schmitt, S., Jeltsch, A., 2003. The human Dnmt2 has residual DNA-(cytosine-C5) methyltransferase activity. J. Biol. Chem. 278, 31717-31721.
    [44]
    Hollander, M.C., Fornace, A.J., 2002. Genomic instability, centrosome amplification, cell cycle checkpoints and Gadd45a. Oncogene 21, 6228-6233.
    [45]
    Holz-Schietinger, C., Matje, D.M., Harrison, M.F., Reich, N.O., 2011. Oligomerization of DNMT3A controls the mechanism of de Novo DNA methylation. J. Biol. Chem. 286, 41479-41488.
    [46]
    Holz-Schietinger, C., Matje, D.M., Reich, N.O., 2012. Mutations in DNA Methyltransferase (DNMT3A) Observed in acute myeloid leukemia patients disrupt processive methylation. J. Biol. Chem. 287, 30941-30951.
    [47]
    Jeltsch, A., Jurkowska, R.Z., 2016. Allosteric control of mammalian DNA methyltransferases - a new regulatory paradigm. Nucleic Acids Res. 44, 8556-8575.
    [48]
    Jia, D., Jurkowska, R.Z., Zhang, X., Jeltsch, A., Cheng, X., 2007a. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449, 248.
    [49]
    Jia, D., Jurkowska, R.Z., Zhang, X., Jeltsch, A., Cheng, X., 2007b. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449, 248-251.
    [50]
    Jones, S.E., Grozea, P.N., Metz, E.N., Haut, A., Stephens, R.L., Morrison, F.S., Butler, J.J., Byrne, G.E., Moon, T.E., Fisher, R., Haskins, C.L., Coltman, C.A., 1979. Superiority of adriamycin-containing combination chemotherapy in the treatment of diffuse lymphoma: a Southwest Oncology Group study. Cancer 43, 417-425.
    [51]
    Jones, P.A., Ohtani, H., Chakravarthy, A., De Carvalho, D.D., 2019. Epigenetic therapy in immune-oncology. Nat. Rev. Cancer 19, 151-161.
    [52]
    Jurkowska, R.Z., Rajavelu, A., Anspach, N., Urbanke, C., Jankevicius, G., Ragozin, S., Nellen, W., Jeltsch, A., 2011. Oligomerization and binding of the Dnmt3a DNA methyltransferase to parallel DNA molecules: heterochromatic localization and role of Dnmt3L. J. Biol. Chem. 286, 24200-24207.
    [53]
    Koya, J., Kataoka, K., Sato, T., Bando, M., Kato, Y., Tsuruta-Kishino, T., Kobayashi, H., Narukawa, K., Miyoshi, H., Shirahige, K., Kurokawa, M., 2016. DNMT3A R882 mutants interact with polycomb proteins to block haematopoietic stem and leukaemic cell differentiation. Nat. Commun. 7.
    [54]
    Kreso, A., O’Brien, C.A., Galen, P. van, Gan, O.I., Notta, F., Brown, A.M.K., Ng, K., Ma, J., Wienholds, E., Dunant, C., Pollett, A., Gallinger, S., McPherson, J., Mullighan, C.G., Shibata, D., Dick, J.E., 2013. Variable clonal repopulation dynamics Influence chemotherapy response in colorectal cancer. Science 339, 543-548.
    [55]
    Kuppers, R., 2009. The biology of Hodgkin’s lymphoma. Nat. Rev. Cancer 9, 15-27.
    [56]
    Lai, A.Y., Mav, D., Shah, R., Grimm, S.A., Phadke, D., Hatzi, K., Melnick, A., Geigerman, C., Sobol, S.E., Jaye, D.L., Wade, P.A., 2013. DNA methylation profiling in human B cells reveals immune regulatory elements and epigenetic plasticity at Alu elements during B-cell activation. Genome Res. 23, 2030-2041.
    [57]
    Landau, D.A., Clement, K., Ziller, M.J., Boyle, P., Fan, J., Gu, H., Stevenson, K., Sougnez, C., Wang, L., Li, S., Kotliar, D., Zhang, W., Ghandi, M., Garraway, L., Fernandes, S.M., Livak, K.J., Gabriel, S., Gnirke, A., Lander, E.S., Brown, J.R., Neuberg, D., Kharchenko, P.V., Hacohen, N., Getz, G., Meissner, A., Wu, C.J., 2014. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell 26, 813-825.
    [58]
    Lee, B., Morano, A., Porcellini, A., Muller, M.T., 2012. GADD45α inhibition of DNMT1 dependent DNA methylation during homology directed DNA repair. Nucleic Acids Res. 40, 2481-2493.
    [59]
    Lei, H., Oh, S.P., Okano, M., Juttermann, R., Goss, K.A., Jaenisch, R., Li, E., 1996. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122, 3195-3205.
    [60]
    Lenz, G., Staudt, L.M., 2010. Aggressive lymphomas. N. Engl. J. Med. 362, 1417-1429.
    [61]
    Leonard, S., Wei, W., Anderton, J., Vockerodt, M., Rowe, M., Murray, P.G., Woodman, C.B., 2011. Epigenetic and transcriptional changes which follow epstein-barr virus infection of germinal center b cells and their relevance to the pathogenesis of hodgkin’s lymphoma. J. Virol. 85, 9568-9577.
    [62]
    Leonhardt, H., Page, A.W., Weier, H.-U., Bestor, T.H., 1992. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71, 865-873.
    [63]
    Lev Maor, G., Yearim, A., Ast, G., 2015. The alternative role of DNA methylation in splicing regulation. Trends Genet. 31, 274-280.
    [64]
    Ley, T.J., Ding, L., Walter, M.J., McLellan, M.D., Lamprecht, T., Larson, D.E., Kandoth, C., Payton, J.E., Baty, J., Welch, J., Harris, C.C., Lichti, C.F., Townsend, R.R., Fulton, R.S., Dooling, D.J., Koboldt, D.C., Schmidt, H., Zhang, Q., Osborne, J.R., Lin, L., O’Laughlin, M., McMichael, J.F., Delehaunty, K.D., McGrath, S.D., Fulton, L.A., Magrini, V.J., Vickery, T.L., Hundal, J., Cook, L.L., Conyers, J.J., Swift, G.W., Reed, J.P., Alldredge, P.A., Wylie, T., Walker, J., Kalicki, J., Watson, M.A., Heath, S., Shannon, W.D., Varghese, N., Nagarajan, R., Westervelt, P., Tomasson, M.H., Link, D.C., Graubert, T.A., DiPersio, J.F., Mardis, E.R., Wilson, R.K., 2010. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 363, 2424-2433.
    [65]
    Li, E., Bestor, T.H., Jaenisch, R., 1992. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915-926.
    [66]
    Li, S., Garrett-Bakelman, F.E., Chung, S.S., Sanders, M.A., Hricik, T., Rapaport, F., Patel, J., Dillon, R., Vijay, P., Brown, A.L., Perl, A.E., Cannon, J., Bullinger, L., Luger, S., Becker, M., Lewis, I.D., To, L.B., Delwel, R., Lowenberg, B., Dohner, H., Dohner, K., Guzman, M.L., Hassane, D.C., Roboz, G.J., Grimwade, D., Valk, P.J.M., D’Andrea, R.J., Carroll, M., Park, C.Y., Neuberg, D., Levine, R., Melnick, A.M., Mason, C.E., 2016. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat. Med. 22, 792-799.
    [67]
    Liu, M., Ohtani, H., Zhou, W., OErskov, A.D., Charlet, J., Zhang, Y.W., Shen, H., Baylin, S.B., Liang, G., Groenbaek, K., Jones, P.A., 2016. Vitamin C increases viral mimicry induced by 5-aza-2′-deoxycytidine. Proc. Natl. Acad. Sci. 113, 10238-10244.
    [68]
    Lyko, F., 2018. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 19, 81-92.
    [69]
    Maes, K., De Smedt, E., Lemaire, M., De Raeve, H., Menu, E., Van Valckenborgh, E., McClue, S., Vanderkerken, K., De Bruyne, E., 2014. The role of DNA damage and repair in decitabine-mediated apoptosis in multiple myeloma. Oncotarget 5.
    [70]
    Manoharan, A., Roure, C.D., Rolink, A.G., Matthias, P., 2015. De novo DNA methyltransferases Dnmt3a and Dnmt3b regulate the onset of Igκ light chain rearrangement during early B-cell development. Eur. J. Immunol. 45, 2343-2355.
    [71]
    McCarty, M., Avery, O.T., 1946. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J. Exp. Med. 83, 89-96.
    [72]
    Meissner, A., 2005. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 33, 5868-5877.
    [73]
    Molavi, O., Wang, P., Zak, Z., Gelebart, P., Belch, A., Lai, R., 2013. Gene methylation and silencing of SOCS3 in mantle cell lymphoma. Br. J. Haematol. 161, 348-356.
    [74]
    Momparler, R.L., 2005. Epigenetic therapy of cancer with 5-Aza-2′-deoxycytidine (decitabine). Semin. Oncol. 32, 443-451.
    [75]
    Moore, L.D., Le, T., Fan, G., 2013. DNA methylation and its basic function. Neuropsychopharmacology 38, 23-38.
    [76]
    Negrotto, S., Ng, K.P., Jankowska, A.M., Bodo, J., Gopalan, B., Guinta, K., Mulloy, J.C., Hsi, E., Maciejewski, J., Saunthararajah, Y., 2012. CpG methylation patterns and decitabine treatment response in acute myeloid leukemia cells and normal hematopoietic precursors. Leukemia 26, 244-254.
    [77]
    Okano, M., Bell, D.W., Haber, D.A., Li, E., 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247-257.
    [78]
    Okano, M., Xie, S., Li, E., 1998. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet. 19, 219-220.
    [79]
    Palii, S.S., Van Emburgh, B.O., Sankpal, U.T., Brown, K.D., Robertson, K.D., 2008. DNA methylation inhibitor 5-Aza-2’-Deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by Dna methyltransferases 1 and 3B. Mol. Cell. Biol. 28, 752-771.
    [80]
    Paronetto, M.P., Passacantilli, I., Sette, C., 2016. Alternative splicing and cell survival: from tissue homeostasis to disease. Cell Death Differ. 23, 1919-1929.
    [81]
    Poole, C.J., Zheng, W., Lodh, A., Yevtodiyenko, A., Liefwalker, D., Li, H., Felsher, D.W., Riggelen, J. van, 2017. DNMT3B overexpression contributes to aberrant DNA methylation and MYC-driven tumor maintenance in T-ALL and Burkitt’s lymphoma. Oncotarget 8, 76898-76920.
    [82]
    Qiu, X., Hother, C., Ralfkiaer, U.M., Soegaard, A., Lu, Q., Workman, C.T., Liang, G., Jones, P.A., Groenbaek, K., 2010. Equitoxic doses of 5-Azacytidine and 5-Aza-2′-deoxycytidine induce diverse immediate and overlapping heritable changes in the transcriptome. PLoS ONE 5, e12994.
    [83]
    Ren, W., Gao, L., Song, J., 2018. Structural basis of DNMT1 and DNMT3A-mediated DNA methylation. Genes 9, 620.
    [84]
    Rinaldi, L., Datta, D., Serrat, J., Morey, L., Solanas, G., Avgustinova, A., Blanco, E., Pons, J.I., Matallanas, D., Von Kriegsheim, A., Di Croce, L., Benitah, S.A., 2016. Dnmt3a and Dnmt3b associate with enhancers to regulate human epidermal stem cell homeostasis. Cell Stem Cell 19, 491-501.
    [85]
    Robaina, M.C., Mazzoccoli, L., Arruda, V.O., Reis, F.R. de S., Apa, A.G., de Rezende, L.M.M., Klumb, C.E., 2015. Deregulation of DNMT1, DNMT3B and miR-29s in Burkitt lymphoma suggests novel contribution for disease pathogenesis. Exp. Mol. Pathol. 98, 200-207.
    [86]
    Roller, A., Grossmann, V., Bacher, U., Poetzinger, F., Weissmann, S., Nadarajah, N., Boeck, L., Kern, W., Haferlach, C., Schnittger, S., Haferlach, T., Kohlmann, A., 2013. Landmark analysis of DNMT3A mutations in hematological malignancies. Leukemia 27, 1573-1578.
    [87]
    Roulois, D., Loo Yau, H., Singhania, R., Wang, Y., Danesh, A., Shen, S.Y., Han, H., Liang, G., Jones, P.A., Pugh, T.J., O’Brien, C., De Carvalho, D.D., 2015. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961-973.
    [88]
    Rui, L., Schmitz, R., Ceribelli, M., Staudt, L.M., 2011. Malignant pirates of the immune system. Nat. Immunol. 12, 933-940.
    [89]
    Russler-Germain, D.A., Spencer, D.H., Young, M.A., Lamprecht, T.L., Miller, C.A., Fulton, R., Meyer, M.R., Erdmann-gilmore, p., townsend, r.r., wilson, r.k., ley, t.j., 2014. The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell 25, 442-454.
    [90]
    Sandoval, J.E., Huang, Y.-H., Muise, A., Goodell, M.A., Reich, N.O., 2019. Mutations in the DNMT3A DNA methyltransferase in acute myeloid leukemia patients cause both loss and gain of function and differential regulation by protein partners. J. Biol. Chem. 294, 4898–4910.
    [91]
    Schubert, H.L., Blumenthal, R.M., Cheng, X., 2003. Many paths to methyltransfer: a chronicle of convergence. Trends Biochem. Sci. 28, 329-335.
    [92]
    Scott, S.A., Dong, W.-F., Ichinohasama, R., Hirsch, C., Sheridan, D., Sanche, S.E., Geyer, C.R., DeCoteau, J.F., 2006. 5-Aza-2′-deoxycytidine (decitabine) can relieve p21WAF1 repression in human acute myeloid leukemia by a mechanism involving release of histone deacetylase 1 (HDAC1) without requiring p21WAF1 promoter demethylation. Leuk. Res. 30, 69-76.
    [93]
    Shaknovich, R., Cerchietti, L., Tsikitas, L., Kormaksson, M., De, S., Figueroa, M.E., Ballon, G., Yang, S.N., Weinhold, N., Reimers, M., Clozel, T., Luttrop, K., Ekstrom, T.J., Frank, J., Vasanthakumar, A., Godley, L.A., Michor, F., Elemento, O., Melnick, A., 2011. DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation. Blood 118, 3559-3569.
    [94]
    Spencer, S.L., Gaudet, S., Albeck, J.G., Burke, J.M., Sorger, P.K., 2009. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459, 428-432.
    [95]
    Stelling, A., Wu, C.-T., Bertram, K., Hashwah, H., Theocharides, A.P.A., Manz, M.G., Tzankov, A., Muller, A., 2019. Pharmacological DNA demethylation restores SMAD1 expression and tumor suppressive signaling in diffuse large B-cell lymphoma. Blood Adv. 3, 3020-3032.
    [96]
    Suzuki, M., Yamada, T., Kihara-Negishi, F., Sakurai, T., Hara, E., Tenen, D.G., Hozumi, N., Oikawa, T., 2006. Site-specific DNA methylation by a complex of PU.1 and Dnmt3a/b. Oncogene 25, 2477-2488.
    [97]
    Swerev, T.M., Wirth, T., Ushmorov, A., 2017. Activation of oncogenic pathways in classical Hodgkin lymphoma by decitabine: A rationale for combination with small molecular weight inhibitors. Int. J. Oncol. 50, 555-566.
    [98]
    Tamm, I., Wagner, M., Schmelz, K., 2005. Decitabine activates specific caspases downstream of p73 in myeloid leukemia. Ann. Hematol. 84, 47-53.
    [99]
    Teater, M., Dominguez, P.M., Redmond, D., Chen, Z., Ennishi, D., Scott, D.W., Cimmino, L., Ghione, P., Chaudhuri, J., Gascoyne, R.D., Aifantis, I., Inghirami, G., Elemento, O., Melnick, A., Shaknovich, R., 2018. AICDA drives epigenetic heterogeneity and accelerates germinal center-derived lymphomagenesis. Nat. Commun. 9.
    [100]
    Wakita, S., Yamaguchi, H., Omori, I., Terada, K., Ueda, T., Manabe, E., Kurosawa, S., Iida, S., Ibaraki, T., Sato, Y., Todoroki, T., Hirakawa, T., Ryotokuji, T., Arai, K., Kitano, T., Mitamura, Y., Kosaka, F., Dan, K., Inokuchi, K., 2013. Mutations of the epigenetics-modifying gene (DNMT3a, TET2, IDH1/2) at diagnosis may induce FLT3-ITD at relapse in de novo acute myeloid leukemia. Leukemia 27, 1044-1052.
    [101]
    Wang, B.-D., Lee, N.H., 2018. Aberrant RNA splicing in cancer and drug resistance. Cancers 10, 458.
    [102]
    Weber, J., Salgaller, M., Samid, D., Johnson, B., Herlyn, M., Lassam, N., Treisman, J., Rosenberg, S.A., 1994. Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-Aza-2’-deoxycytidine 54, 1766-1771.
    [103]
    Webster, K.E., O’Bryan, M.K., Fletcher, S., Crewther, P.E., Aapola, U., Craig, J., Harrison, D.K., Aung, H., Phutikanit, N., Lyle, R., Meachem, S.J., Antonarakis, S.E., de Kretser, D.M., Hedger, M.P., Peterson, P., Carroll, B.J., Scott, H.S., 2005. Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proc. Natl. Acad. Sci. 102, 4068-4073.
    [104]
    Weinberg, D.N., Papillon-Cavanagh, S., Chen, H., Yue, Y., Chen, X., Rajagopalan, K.N., Horth, C., McGuire, J.T., Xu, X., Nikbakht, H., Lemiesz, A.E., Marchione, D.M., Marunde, M.R., Meiners, M.J., Cheek, M.A., Keogh, M.-C., Bareke, E., Djedid, A., Harutyunyan, A.S., Jabado, N., Garcia, B.A., Li, H., Allis, C.D., Majewski, J., Lu, C., 2019. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 573, 281-286.
    [105]
    Xie, Y., Pittaluga, S., Jaffe, E.S., 2015. The histological classification of diffuse large B-cell lymphomas. Semin. Hematol. 52, 57-66.
    [106]
    Yang, L., Rau, R., Goodell, M.A., 2015. DNMT3A in haematological malignancies. Nat. Rev. Cancer 15, 152-165.
    [107]
    Yang, X., Han, H., De Carvalho, D.D., Lay, F.D., Jones, P.A., Liang, G., 2014. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 26, 577-590.
    [108]
    Yu, J., Qin, B., Moyer, A.M., Nowsheen, S., Liu, T., Qin, S., Zhuang, Y., Liu, D., Lu, S.W., Kalari, K.R., Visscher, D.W., Copland, J.A., McLaughlin, S.A., Moreno-Aspitia, A., Northfelt, D.W., Gray, R.J., Lou, Z., Suman, V.J., Weinshilboum, R., Boughey, J.C., Goetz, M.P., Wang, L., 2018. DNA methyltransferase expression in triple-negative breast cancer predicts sensitivity to decitabine. J. Clin. Invest. 128, 2376-2388.
    [109]
    Zhang, Q., Wang, H.Y., Marzec, M., Raghunath, P.N., Nagasawa, T., Wasik, M.A., 2005. STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. Proc. Natl. Acad. Sci. 102, 6948-6953.
    [110]
    Zhang, L., Yao, Y., Zhang, S., Liu, Y., Guo, H., Ahmed, M., Bell, T., Zhang, H., Han, G., Lorence, E., Badillo, M., Zhou, S., Sun, Y., Di Francesco, M.E., Feng, N., Haun, R., Lan, R., Mackintosh, S.G., Mao, X., Song, X., Zhang, J., Pham, L.V., Lorenzi, P.L., Marszalek, J., Heffernan, T., Draetta, G., Jones, P., Futreal, A., Nomie, K., Wang, L., Wang, M., 2019. Metabolic reprogramming toward oxidative phosphorylation identifies a therapeutic target for mantle cell lymphoma. Sci. Transl. Med. 11, eaau1167.
    [111]
    Zhang, Z., He, Q., Tao, Y., Guo, J., Xu, F., Wu, L.-Y., Zhao, Y.-S., Wu, D., Zhou, L.-Y., Su, J.-Y., Song, L.-X., Xiao, C., Li, X., Chang, C.-K., 2017. Decitabine treatment sensitizes tumor cells to T-cell-mediated cytotoxicity in patients with myelodysplastic syndromes. Am. J. Transl. Res. 9, 454-465.
    [112]
    Zhao, X., Ren, Y., Lawlor, M., Shah, B.D., Park, P.M.C., Lwin, T., Wang, X., Liu, K., Wang, M., Gao, J., Li, T., Xu, M., Silva, A.S., Lee, K., Zhang, T., Koomen, J.M., Jiang, H., Sudalagunta, P.R., Meads, M.B., Cheng, F., Bi, C., Fu, K., Fan, H., Dalton, W.S., Moscinski, L.C., Shain, K.H., Sotomayor, E.M., Wang, G.G., Gray, N.S., Cleveland, J.L., Qi, J., Tao, J., 2019. BCL2 amplicon loss and transcriptional remodeling drives ABT-199 resistance in B cell lymphoma models. Cancer Cell 35, 752-766.e9.
    [113]
    Zhu, Z., Lu, X., Jiang, L., Sun, X., Zhou, H., Jia, Z., Zhang, X., Ma, L., 2015. STAT3 signaling pathway is involved in decitabine induced biological phenotype regulation of acute myeloid leukemia cells. Am. J. Transl. Res. 7, 1896-1907.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures (3)  / Tables (2)

    Article Metrics

    Article views (159) PDF downloads (9) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return