5.9
CiteScore
5.9
Impact Factor
Volume 47 Issue 5
May  2020
Turn off MathJax
Article Contents

Investigation of CRISPR/Cas9-induced SD1 rice mutants highlights the importance of molecular characterization in plant molecular breeding

doi: 10.1016/j.jgg.2020.04.004
More Information
  • Although Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 9 (Cas9) system has been widely used for basic research in model plants, its application for applied breeding in crops has faced strong regulatory obstacles, due mainly to a poor understanding of the authentic output of this system, particularly in higher generations. In this study, different from any previous studies, we investigated in detail the molecular characteristics and production performance of CRISPR/Cas9-generated SD1 (semi-dwarf 1) mutants from T2 to T4 generations, of which the selection of T1 and T2 was done only by visual phenotyping for semidwarf plants. Our data revealed not only on- and off-target mutations with small or lager indels but also exogenous elements in T2 plants. All indel mutants passed stably to T3 or T4 without additional modifications independent on the presence of Cas9, while some lines displayed unexpected hereditary patterns of Cas9 or some exogenous elements. In addition, effects of various SD1 alleles on rice height and yield differed depending on genetic backgrounds. Taken together, our data showed that the CRISPR/Cas9 system is effective in producing homozygous mutants for functional analysis, but it may be not as precise as expected in rice, and that early and accurate molecular characterization and screening must be carried out for generations before transitioning of the CRISPR/Cas9 system from laboratory to field.
  • loading
  • [1]
    Araki, M., Ishii, T., 2015. Towards social acceptance of plant breeding by genome editing. Trends Plant Sci. 20, 145-149.
    [2]
    Convention on Biological Diversity, 2000. Cartagena protocol on biosafety to the convention on biological diversity: text and annexes. Montreal, Canada. Secretariat of the Convention on Biological Diversity.
    [3]
    Court of Justice of the European Union, 2018. PRESS RELEASE No 111/18: Organisms obtained by mutagenesis are GMOs and are, in principle, subject to the obligations laid down by the GMO Directive. Judgm. Case C-528/16.
    [4]
    Endo, M., Mikami, M., Toki, S., 2015. Multigene knockout utilizing off-target mutations of the CRISPR/cas9 system in rice. Plant Cell Physiol. 56, 41-47.
    [5]
    Feng, Z., Mao, Y., Xu, N., Zhang, B., Wei, P., Yang, D.L., Wang, Z., Zhang, Z., Zheng, R., Yang, L., Zeng, L., Liu, X., Zhu, J.K., 2014. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 111, 4632-4637.
    [6]
    Feng, C., Yuan, J., Wang, R., Liu, Y., Birchler, J.A., Han, F., 2016. Efficient targeted genome modification in maize using CRISPR/Cas9 system. J. Genet. Genomics. 43, 37-43.
    [7]
    Gao, J., Wang, G., Ma, S., Xie, X., Wu, X., Zhang, X., Wu, Y., Zhao, P., Xia, Q., 2015. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol. Biol. 87, 99-110.
    [8]
    Gao, W., Xu, W.T., Huang, K.L., Guo, M. Z., Luo, Y.B., 2018. Risk analysis for genome editing-derived food safety in China. Food Control. 84, 128-137.
    [9]
    Hiei, Y., Komari, T., 2008. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat. Protoc. 3, 824.
    [10]
    Huang, K., 2017. Safety assessment of genetically modified foods. Springer Singapore.
    [11]
    Ishizaki, T., 2016. CRISPR/Cas9 in rice can induce new mutations in later generations, leading to chimerism and unpredicted segregation of the targeted mutation. Mol. Breed. 36, 165.
    [12]
    ISAAA, 2019. Global status of commercialized biotech/GM crops in 2018: biotech crops continue to help meet the challenges of increased population and climate change. ISAAA Brief No. 54. ISAAA: Ithaca, NY.
    [13]
    Jiang, W.Z., Yang, B., Weeks, D.P., 2014. Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations. PLoS One. 9, e0099225.
    [14]
    Jones, H.D., 2015. Regulatory uncertainty over genome editing. Nat. Plants. 1, 1-3.
    [15]
    Kosicki, M., Tomberg, K., Bradley, A., 2018. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765-771.
    [16]
    Kuroha, T., Nagai, K., Gamuyao, R., Wang, D.R., Furuta, T., Nakamori, M., Kitaoka, T., Adachi, K., Minami, A., Mori, Y., Mashiguchi, K., Seto, Y., Yamaguchi, S., Kojima, M., Sakakibara, H., Wu, J., Ebana, K., Mitsuda, N., Ohme-Takagi, M., Yanagisawa, S., Yamasaki, M., Yokoyama, R., Nishitani, K., Mochizuki, T., Tamiya, G., McCouch, S.R., Ashikari, M., 2018. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science. 361, 181-186.
    [17]
    Li, M., Li, X., Zhou, Z., Wu, P., Fang, M., Pan, X., Lin, Q., Luo, W., Wu, G., Li, H., 2016. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front. Plant Sci. 7, 377.
    [18]
    Li, S., Tian, Y., Wu, K., Ye, Y., Yu, J., Zhang, J., Liu, Q., Hu, M., Li, H., Tong, Y., Harberd, N.P., Fu, X., 2018. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 560, 595-600.
    [19]
    Li, X., Zhou, W., Ren, Y., Tian, X., Lv, T., Wang, Z., Fang, J., Chu, C., Yang, J. and Bu, Q., 2017. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing. J. Genet.Genomics. 44, 175-178.
    [20]
    Liang, Z., Zhang, K., Chen, K., Gao, C., 2014. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genomics. 41, 63-68.
    [21]
    Liu, H., Ding, Y., Zhou, Y., Jin, W., Xie, K., Chen, L.L., 2017. CRISPR-P 2.0: an improved CRISPR/Cas9 tool for genome editing in plants. Mol Plant 10 (3), 530–532.
    [22]
    Lusser, M., Parisi, C., Plan, D., Rodriguez-Cerezo, E., 2012. Deployment of new biotechnologies in plant breeding. Nat. Biotechnol. 30, 231-239.
    [23]
    Mao, Y., Zhang, H., Xu, N., Zhang, B., Gou, F., Zhu, J.K., 2013. Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol. Plant. 6, 2008-2011.
    [24]
    Mattei, T.A., 2018. The CRISPR-Cas9 Genome Editing System: Not as precise as previously believed. World Neurosurg. 118, 377-378.
    [25]
    Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., Wan, J., Gu, H., Qu, L.J., 2013. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. 23, 1233-1236.
    [26]
    Murray, M.G., Thompson, W.F., 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321-4326.
    [27]
    Peterson, B.A., Haak, D.C., Nishimura, M.T., Teixeira, P.J.P.L., James, S.R., Dangl, J.L., Nimchuk, Z.L., 2016. Genome-wide assessment of efficiency and specificity in crispr/cas9 mediated multiple site targeting in arabidopsis. PLoS One. 11, e0162169.
    [28]
    Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Swapan, D., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G.S., Kitano, H., Matsuoka, M., 2002. A mutant gibberellin-synthesis gene in rice. Nature. 416, 701-702.
    [29]
    Schaeffer, S.M., Nakata, P.A., 2015. CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field. Plant Sci. 240, 130-142.
    [30]
    Shan, Q., Wang, Y., Li, J., Gao, C., 2014. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 9, 2395.
    [31]
    Tang, X., Liu, G., Zhou, J., Ren, Q., You, Q., Tian, L., Xin, X., Zhong, Z., Liu, B., Zheng, X., Zhang, D., Malzahn, A., Gong, Z., Qi, Y., Zhang, T., Zhang, Y., 2018. A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biol. 19, 84.
    [32]
    Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., Qiu, J.L., 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947-951.
    [33]
    Wolt, J.D., 2017. Safety, security, and policy considerations for plant genome editing, in: Progress in Molecular Biology and Translational Science. 149, 215-241. Academic Press.
    [34]
    Wolt, J.D., Wang, K., Sashital, D., Lawrence-Dill, C.J., 2016. Achieving plant CRISPR targeting that limits off-target effects. Plant Genome. 9, 1-8.
    [35]
    Wolter, F., Puchta, H., 2017. Knocking out consumer concerns and regulator’s rules: Efficient use of CRISPR/Cas ribonucleoprotein complexes for genome editing in cereals. Genome Biol. 18, 43.
    [36]
    Wu, J. and Yin, H., 2019. Engineering guide RNA to reduce the off-target effects of CRISPR. J. Genet.Genomics. 46, 523-529.
    [37]
    Xie, K., Minkenberg, B., Yang, Y., 2015. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. U. S. A. 112, 3570-3575.
    [38]
    Xu, R.F., Li, H., Qin, R.Y., Li, J., Qiu, C.H., Yang, Y.C., Ma, H., Li, L., Wei, P.C., Yang, J.B., 2015. Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci. Rep. 5, 11491.
    [39]
    Zhang, Y., Massel, K., Godwin, I.D., Gao, C., 2018a. Applications and potential of genome editing in crop improvement. Genome Biol. 19, 210.
    [40]
    Zhang, Q., Xing, H.L., Wang, Z.P., Zhang, H.Y., Yang, F., Wang, X.C., Chen, Q.J., 2018b. Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. Plant Mol. Biol. 96, 445-456.
    [41]
    Zhang, Hui, Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., Mao, Y., Yang, L., Zhang, Heng, Xu, N., Zhu, J.K., 2014. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J. 12, 797-807.
    [42]
    Zhou, H., Liu, B., Weeks, D.P., Spalding, M.H., Yang, B., 2014. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res. 42, 10903-10914.
    [43]
    Zhu, C., Bortesi, L., Baysal, C., Twyman, R.M., Fischer, R., Capell, T., Schillberg, S., Christou, P., 2017. Characteristics of genome editing mutations in cereal crops. Trends Plant Sci. 22, 38-52.
    [44]
    Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y., Qiu, J.L., Wang, D., Gao, C., 2017. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35, 438-440.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures (2)  / Tables (2)

    Article Metrics

    Article views (113) PDF downloads (10) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return