5.9
CiteScore
5.9
Impact Factor
Volume 47 Issue 11
Nov.  2020
Turn off MathJax
Article Contents

Why is oocyte aneuploidy increased with maternal aging?

doi: 10.1016/j.jgg.2020.04.003
More Information
  • Corresponding author: E-mail address: sunqy@gd2h.org.cn (Qing-Yuan Sun)
  • Publish Date: 2020-11-25
  • One of the main causes of pregnancy failure and fetus abortion is oocyte aneuploidy, which is increased with maternal aging. Numerous possible causes of oocyte aneuploidy in aged women have been proposed, including cross-over formation defect, cohesin loss, spindle deformation, spindle assembly checkpoint malfunction, microtubule-kinetochore attachment failure, kinetochore mis-orientation, mitochondria dysfunction-induced increases in reactive oxygen species, protein over-acetylation, and DNA damage. However, it still needs to be answered if these aneuploidization factors have inherent relations, and how to prevent chromosome aneuploidy in aged oocytes. Epidemiologically, oocyte aneuploidy has been found to be weakly associated with higher homocysteine concentrations, obesity, ionizing radiation and even seasonality. In this review, we summarize the research progress and present an integrated view of oocyte aneuploidization.
  • loading
  • [1]
    Akiyama, T., Nagata, M., Aoki, F., 2006. Inadequate histone deacetylation during oocyte meiosis causes aneuploidy and embryo death in mice. Proc. Natl. Acad. Sci. U. S. A. 103, 7339-7344.
    [2]
    Am J Clin NutrGutierrez-Caballero, C., Herran, Y., Sanchez-Martin, M., Suja, J.A., Barbero, J.L., Llano, E., Pendas, A.M., 2011. Identification and molecular characterization of the mammalian alpha-kleisin RAD21L. Cell Cycle 10, 1477-1487.
    [3]
    Andreychenko, S.V., Klepko, A.V., Gorban, L.V., Motryna, O.A., Grubska, L.V., Trofimenko, O.V., 2016. Post-Chornobyl remote radiation effects on human sperm and seminal plasma characteristics. Exp. Oncol. 38, 245-251.
    [4]
    Angell, R.R., 1991. Predivision in human oocytes at meiosis I: a mechanism for trisomy formation in man. Hum. Genet. 86, 383-387.
    [5]
    Babayev, E., Seli, E., 2015. Oocyte mitochondrial function and reproduction. Curr. Opin. Obstet. Gynecol. 27, 175-181.
    [6]
    Babayev, E., Wang, T., Szigeti-Buck, K., Lowther, K., Taylor, H.S., Horvath, T., Seli, E., 2016. Reproductive aging is associated with changes in oocyte mitochondrial dynamics, function, and mtDNA quantity. Maturitas 93, 121-130.
    [7]
    Barbehenn, E.K., Wales, R.G., Lowry, O.H., 1974. The explanation for the blockade of glycolysis in early mouse embryos. Proc. Natl. Acad. Sci. U. S. A. 71, 1056-1060.
    [8]
    Battaglia, D.E., Goodwin, P., Klein, N.A., Soules, M.R., 1996. Influence of maternal age on meiotic spindle assembly in oocytes from naturally cycling women. Hum. Reprod. 11, 2217-2222.
    [9]
    Berker, B., Kaya, C., Aytac, R., Satiroglu, H., 2009. Homocysteine concentrations in follicular fluid are associated with poor oocyte and embryo qualities in polycystic ovary syndrome patients undergoing assisted reproduction. Hum. Reprod. 24, 2293-2302.
    [10]
    Boue, J., Bou, A., Lazar, P., 1975. Retrospective and prospective epidemiological studies of 1500 karyotyped spontaneous human abortions. Teratology 12, 11-26.
    [11]
    Brooker, A.S., Berkowitz, K.M., 2014. The roles of cohesins in mitosis, meiosis, and human health and disease. Methods Mol. Biol. 1170, 229-266.
    [12]
    Burkhardt, S., Borsos, M., Szydlowska, A., Godwin, J., Williams, S.A., Cohen, P.E., Hirota, T., Saitou, M., Tachibana-Konwalski, K., 2016. Chromosome cohesion established by Rec8-Cohesin in fetal oocytes is maintained without detectable turnover in oocytes arrested for months in mice. Curr. Biol. 26, 678-685.
    [13]
    Chambon, J.P., Touati, S.A., Berneau, S., Cladiere, D., Hebras, C., Groeme, R., McDougall, A., Wassmann, K., 2013. The PP2A inhibitor I2PP2A is essential for sister chromatid segregation in oocyte meiosis II. Curr. Biol. 23, 485-490.
    [14]
    Chiang, T., Duncan, F.E., Schindler, K., Schultz, R.M., Lampson, M.A., 2010. Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. Curr. Biol. 20, 1522-1528.
    [15]
    Collin, P., Nashchekina, O., Walker, R., Pines, J., 2013. The spindle assembly checkpoint works like a rheostat rather than a toggle switch. Nat. Cell. Biol. 15, 1378-1385.
    [16]
    D'Souza D, I., Harrison, L., 2003. Repair of clustered uracil DNA damages in Escherichia coli. Nucleic Acids Res. 31, 4573-4581.
    [17]
    Di Emidio, G., Falone, S., Vitti, M., D'Alessandro, A.M., Vento, M., Di Pietro, C., Amicarelli, F., Tatone, C., 2014. SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging. Hum. Reprod. 29, 2006-2017.
    [18]
    Down, J.L., 1995. Observations on an ethnic classification of idiots. 1866. Ment. Retard. 33, 54-56.
    [19]
    Dumollard, R., Duchen, M., Carroll, J., 2007. The role of mitochondrial function in the oocyte and embryo. Curr. Top. Dev. Biol. 77, 21-49.
    [20]
    Eiben, B., Borgmann, S., Schubbe, I., Hansmann, I., 1987. A cytogenetic study directly from chorionic villi of 140 spontaneous abortions. Hum. Genet. 77, 137-141.
    [21]
    Eichenlaub-Ritter, U., 1998. Genetics of oocyte ageing. Maturitas 30, 143-169.
    [22]
    Eijpe, M., Offenberg, H., Jessberger, R., Revenkova, E., Heyting, C., 2003. Meiotic cohesin REC8 marks the axial elements of rat synaptonemal complexes before cohesins SMC1beta and SMC3. J. Cell Biol. 160, 657-670.
    [23]
    Fisher, J.M., Harvey, J.F., Morton, N.E., Jacobs, P.A., 1995. Trisomy 18: studies of the parent and cell division of origin and the effect of aberrant recombination on nondisjunction. Am. J. Hum. Genet. 56, 669-675.
    [24]
    Fukuda, T., Fukuda, N., Agostinho, A., Hernandez-Hernandez, A., Kouznetsova, A., Hoog, C., 2014. STAG3-mediated stabilization of REC8 cohesin complexes promotes chromosome synapsis during meiosis. EMBO J. 33, 1243-1255.
    [25]
    Galli, M., Morgan, D.O., 2016. Cell size determines the strength of the spindle assembly checkpoint during embryonic development. Dev. Cell 36, 344-352.
    [26]
    Ganem, N.J., Godinho, S.A., Pellman, D., 2009. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278-282.
    [27]
    Garcia, D.N., Saccon, T.D., Pradiee, J., Rincon, J.A.A., Andrade, K.R.S., Rovani, M.T., Mondadori, R.G., Cruz, L.A.X., Barros, C.C., Masternak, M.M., Bartke, A., Mason, J.B., Schneider, A., 2019. Effect of caloric restriction and rapamycin on ovarian aging in mice. Geroscience 41, 395-408.
    [28]
    Gassman, N.R., 2017. Induction of oxidative stress by bisphenol A and its pleiotropic effects. Environ. Mol. Mutagen. 58, 60-71.
    [29]
    Ge, J., Li, C., Li, C., Huang, Z., Zeng, J., Han, L., Wang, Q., 2019. SIRT6 participates in the quality control of aged oocytes via modulating telomere function. Aging (Albany NY) 11, 1965-1976.
    [30]
    Giam, M., Rancati, G., 2015. Aneuploidy and chromosomal instability in cancer: a jackpot to chaos. Cell Div. 10, 3.
    [31]
    Goldman, K.N., Hodes-Wertz, B., McCulloh, D.H., Flom, J.D., Grifo, J.A., 2015. Association of body mass index with embryonic aneuploidy. Fertil. Steril. 103, 744-748.
    [32]
    Goldmann, J.M., Seplyarskiy, V.B., Wong, W.S.W., Vilboux, T., Neerincx, P.B., Bodian, D.L., Solomon, B.D., Veltman, J.A., Deeken, J.F., Gilissen, C., Niederhuber, J.E., 2018. Germline de novo mutation clusters arise during oocyte aging in genomic regions with high double-strand-break incidence. Nat. Genet. 50, 487-492.
    [33]
    Gorbsky, G.J., 2015. The spindle checkpoint and chromosome segregation in meiosis. FEBS J. 282, 2471-2487.
    [34]
    Gruhn, J.R., Zielinska, A.P., Shukla, V., Blanshard, R., Capalbo, A., Cimadomo, D., Nikiforov, D., Chan, A.C., Newnham, L.J., Vogel, I., Scarica, C., Krapchev, M., Taylor, D., Kristensen, S.G., Cheng, J., Ernst, E., Bjorn, A.B., Colmorn, L.B., Blayney, M., Elder, K., Liss, J., Hartshorne, G., Grondahl, M.L., Rienzi, L., Ubaldi, F., McCoy, R., Lukaszuk, K., Andersen, C.Y., Schuh, M., Hoffmann, E.R., 2019. Chromosome errors in human eggs shape natural fertility over reproductive life span. Science 365, 1466-1469.
    [35]
    Gui, L., Homer, H., 2012. Spindle assembly checkpoint signalling is uncoupled from chromosomal position in mouse oocytes. Development 139, 1941-1946.
    [36]
    J Guirouilh-Barbat, C Redon, Y. Pommier, 2008. Transcription-coupled DNA double-strand breaks are mediated via the nucleotide excision repair and the Mre11-Rad50-Nbs1 complex. Mol. Biol. Cell 19, 3969-3981.
    [37]
    Hassold, T., Hunt, P., 2001. To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2, 280-291.
    [38]
    Hassold, T., Hunt, P.A., Sherman, S., 1993. Trisomy in humans: incidence, origin and etiology. Curr. Opin. Genet. Dev. 3, 398-403.
    [39]
    Hassold, T., Merrill, M., Adkins, K., Freeman, S., Sherman, S., 1995. Recombination and maternal age-dependent nondisjunction: molecular studies of trisomy 16. Am. J. Hum. Genet. 57, 867-874.
    [40]
    Hassold, T., Sherman, S., Hunt, P., 2000. Counting cross-overs: characterizing meiotic recombination in mammals. Hum. Mol. Genet. 9, 2409-2419.
    [41]
    Hassold, T.J., Jacobs, P.A., 1984. Trisomy in man. Annu. Rev. Genet. 18, 69-97.
    [42]
    He, Y., Li, X., Gao, M., Liu, H., Gu, L., 2019. Loss of HDAC3 contributes to meiotic defects in aged oocytes. Aging Cell 18, e13036.
    [43]
    Heard, E., Martienssen, R.A., 2014. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157, 95-109.
    [44]
    Henderson, S.A., Edwards, R.G., 1968. Chiasma frequency and maternal age in mammals. Nature 218, 22-28.
    [45]
    Hernandez, A., Lopez-Lluch, G., Bernal, J.A., Navas, P., Pintor-Toro, J.A., 2008. Dicoumarol down-regulates human PTTG1/Securin mRNA expression through inhibition of Hsp90. Mol. Cancer Ther. 7, 474-482.
    [46]
    Hildebrand, E., Kallen, B., Josefsson, A., Gottvall, T., Blomberg, M., 2014. Maternal obesity and risk of Down syndrome in the offspring. Prenat. Diagn. 34, 310-315.
    [47]
    Homer, H., Gui, L., Carroll, J., 2009. A spindle assembly checkpoint protein functions in prophase I arrest and prometaphase progression. Science 326, 991-994.
    [48]
    Homer, H.A., McDougall, A., Levasseur, M., Yallop, K., Murdoch, A.P., Herbert, M., 2005. Mad2 prevents aneuploidy and premature proteolysis of cyclin B and securin during meiosis I in mouse oocytes. Genes Dev. 19, 202-207.
    [49]
    Hou, Y., Fan, W., Yan, L., Li, R., Lian, Y., Huang, J., Li, J., Xu, L., Tang, F., Xie, X.S., Qiao, J., 2013. Genome analyses of single human oocytes. Cell 155, 1492-1506.
    [50]
    Hou, Y.J., Zhu, C.C., Duan, X., Liu, H.L., Wang, Q., Sun, S.C., 2016. Both diet and gene mutation induced obesity affect oocyte quality in mice. Sci. Rep. 6, 18858.
    [51]
    Hunt, P.A., Koehler, K.E., Susiarjo, M., Hodges, C.A., Ilagan, A., Voigt, R.C., Thomas, S., Thomas, B.F., Hassold, T.J., 2003. Bisphenol a exposure causes meiotic aneuploidy in the female mouse. Curr. Biol. 13, 546-553.
    [52]
    Jacobs, P.A., Baikie, A.G., Court Brown, W.M., Strong, J.A., 1959. The somatic chromosomes in mongolism. Lancet 1, 710.
    [53]
    James, S.J., Pogribna, M., Pogribny, I.P., Melnyk, S., Hine, R.J., Gibson, J.B., Yi, P., Tafoya, D.L., Swenson, D.H., Wilson, V.L., Gaylor, D.W., 1999. Abnormal folate metabolism and mutation in the methylenetetrahydrofolate reductase gene may be maternal risk factors for Down syndrome. Am. J. Clin. Nutr. 70, 495-501.
    [54]
    Jongbloet, P.H., Mulder, A., Hamers, A.J., 1982. Seasonality of pre-ovulatory non-disjunction and the aetiology of Down syndrome. A European collaborative study. Hum. Genet. 62, 134-138.
    [55]
    Jukic, A.M., Baird, D.D., Weinberg, C.R., McConnaughey, D.R., Wilcox, A.J., 2013. Length of human pregnancy and contributors to its natural variation. Hum. Reprod. 28, 2848-2855.
    [56]
    Kallen, B., Masback, A., 1988. Down syndrome. Seasonality and parity effects. Hereditas 109, 21-27.
    [57]
    Kaytor, M.D., Burright, E.N., Duvick, L.A., Zoghbi, H.Y., Orr, H.T., 1997. Increased trinucleotide repeat instability with advanced maternal age. Hum. Mol. Genet. 6, 2135-2139.
    [58]
    Kim, J., Ishiguro, K., Nambu, A., Akiyoshi, B., Yokobayashi, S., Kagami, A., Ishiguro, T., Pendas, A.M., Takeda, N., Sakakibara, Y., Kitajima, T.S., Tanno, Y., Sakuno, T., Watanabe, Y., 2015. Meikin is a conserved regulator of meiosis-I-specific kinetochore function. Nature 517, 466-471.
    [59]
    Kitajima, T.S., Kawashima, S.A., Watanabe, Y., 2004. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427, 510-517.
    [60]
    Kushnir, V.A., Ludaway, T., Russ, R.B., Fields, E.J., Koczor, C., Lewis, W., 2012. Reproductive aging is associated with decreased mitochondrial abundance and altered structure in murine oocytes. J. Assist. Reprod. Genet. 29, 637-642.
    [61]
    Kyogoku, H., Kitajima, T.S., 2017. Large cytoplasm is linked to the error-prone nature of oocytes. Dev. Cell 41, 287-298.
    [62]
    Lagirand-Cantaloube, J., Ciabrini, C., Charrasse, S., Ferrieres, A., Castro, A., Anahory, T., Lorca, T., 2017. Loss of centromere cohesion in aneuploid human oocytes correlates with decreased kinetochore localization of the sac proteins Bub1 and Bubr1. Sci. Rep. 7, 44001.
    [63]
    Lane, S., Kauppi, L., 2019. Meiotic spindle assembly checkpoint and aneuploidy in males versus females. Cell. Mol. Life Sci. 76, 1135-1150.
    [64]
    Lara-Gonzalez, P., Westhorpe, F.G., Taylor, S.S., 2012. The spindle assembly checkpoint. Curr. Biol. 22, R966-980.
    [65]
    Lejeune, J., Turpin, R., 1962. Somatic chromosomes in mongolism. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 39, 67-77.
    [66]
    LeMaire-Adkins, R., Hunt, P.A., 2000. Nonrandom segregation of the mouse univalent X chromosome: evidence of spindle-mediated meiotic drive. Genetics 156, 775-783.
    [67]
    LeMaire-Adkins, R., Radke, K., Hunt, P.A., 1997. Lack of checkpoint control at the metaphase/anaphase transition: a mechanism of meiotic nondisjunction in mammalian females. J. Cell Biol. 139, 1611-1619.
    [68]
    Li, L., Dong, J., Yan, L., Yong, J., Liu, X., Hu, Y., Fan, X., Wu, X., Guo, H., Wang, X., Zhu, X., Li, R., Yan, J., Wei, Y., Zhao, Y., Wang, W., Ren, Y., Yuan, P., Yan, Z., Hu, B., Guo, F., Wen, L., Tang, F., Qiao, J., 2017. Single-cell RNA-Seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell 20, 891-892.
    [69]
    Li, L., Zheng, P., Dean, J., 2010. Maternal control of early mouse development. Development 137, 859-870.
    [70]
    Li, M., Li, S., Yuan, J., Wang, Z.B., Sun, S.C., Schatten, H., Sun, Q.Y., 2009. Bub3 is a spindle assembly checkpoint protein regulating chromosome segregation during mouse oocyte meiosis. PLoS One 4, e7701.
    [71]
    Lister, L.M., Kouznetsova, A., Hyslop, L.A., Kalleas, D., Pace, S.L., Barel, J.C., Nathan, A., Floros, V., Adelfalk, C., Watanabe, Y., Jessberger, R., Kirkwood, T.B., Hoog, C., Herbert, M., 2010. Age-related meiotic segregation errors in mammalian oocytes are preceded by depletion of cohesin and Sgo2. Curr. Biol. 20, 1511-1521.
    [72]
    Liu, J., Liu, M., Ye, X., Liu, K., Huang, J., Wang, L., Ji, G., Liu, N., Tang, X., Baltz, J.M., Keefe, D.L., Liu, L., 2012. Delay in oocyte aging in mice by the antioxidant N-acetyl-L-cysteine (NAC). Hum. Reprod. 27, 1411-1420.
    [73]
    Luzzo, K.M., Wang, Q., Purcell, S.H., Chi, M., Jimenez, P.T., Grindler, N., Schedl, T., Moley, K.H., 2012. High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects. PLoS One 7, e49217.
    [74]
    Ma, J.Y., Feng, X., Tian, X.Y., Chen, L.N., Fan, X.Y., Guo, L., Li, S., Yin, S., Luo, S.M., Ou, X.H., 2019. The repair of endo/exogenous DNA double-strand breaks and its effects on meiotic chromosome segregation in oocytes. Hum. Mol. Genet. 28, 3422-3430.
    [75]
    Ma, J.Y., Ou Yang, Y.C., Wang, Z.W., Wang, Z.B., Jiang, Z.Z., Luo, S.M., Hou, Y., Liu, Z.H., Schatten, H., Sun, Q.Y., 2013. The effects of DNA double-strand breaks on mouse oocyte meiotic maturation. Cell Cycle 12, 1233-1241.
    [76]
    Machtinger, R., Combelles, C.M., Missmer, S.A., Correia, K.F., Williams, P., Hauser, R., Racowsky, C., 2013. Bisphenol-A and human oocyte maturation in vitro. Hum. Reprod. 28, 2735-2745.
    [77]
    Makrantoni, V., Marston, A.L., 2018. Cohesin and chromosome segregation. Curr. Biol. 28, R688-R693.
    [78]
    Mantzouratou, A., Delhanty, J.D., 2011. Aneuploidy in the human cleavage stage embryo. Cytogenet. Genome Res. 133, 141-148.
    [79]
    Marangos, P., Carroll, J., 2012. Oocytes progress beyond prophase in the presence of DNA damage. Curr. Biol. 22, 989-994.
    [80]
    Marangos, P., Stevense, M., Niaka, K., Lagoudaki, M., Nabti, I., Jessberger, R., Carroll, J., 2015. DNA damage-induced metaphase I arrest is mediated by the spindle assembly checkpoint and maternal age. Nat. Commun. 6, 8706.
    [81]
    McGuinness, B.E., Anger, M., Kouznetsova, A., Gil-Bernabe, A.M., Helmhart, W., Kudo, N.R., Wuensche, A., Taylor, S., Hoog, C., Novak, B., Nasmyth, K., 2009. Regulation of APC/C activity in oocytes by a Bub1-dependent spindle assembly checkpoint. Curr. Biol. 19, 369-380.
    [82]
    Merriman, J.A., Lane, S.I., Holt, J.E., Jennings, P.C., Garcia-Higuera, I., Moreno, S., McLaughlin, E.A., Jones, K.T., 2013. Reduced chromosome cohesion measured by interkinetochore distance is associated with aneuploidy even in oocytes from young mice. Biol. Reprod. 88, 31.
    [83]
    Mihajlovic, A.I., FitzHarris, G., 2018. Segregating chromosomes in the mammalian oocyte. Curr. Biol. 28, R895-R907.
    [84]
    Musacchio, A., Salmon, E.D., 2007. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell. Biol. 8, 379-393.
    [85]
    Nabti, I., Grimes, R., Sarna, H., Marangos, P., Carroll, J., 2017. Maternal age-dependent APC/C-mediated decrease in securin causes premature sister chromatid separation in meiosis II. Nat. Commun. 8, 15346.
    [86]
    Nagaishi, M., Yamamoto, T., Iinuma, K., Shimomura, K., Berend, S.A., Knops, J., 2004. Chromosome abnormalities identified in 347 spontaneous abortions collected in Japan. J. Obstet. Gynaecol. Res. 30, 237-241.
    [87]
    Nakagawa, S., FitzHarris, G., 2017. Intrinsically defective microtubule dynamics contribute to age-related chromosome segregation errors in mouse oocyte meiosis-I. Curr. Biol. 27, 1040-1047.
    [88]
    Nasmyth, K., Haering, C.H., 2009. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43, 525-558.
    [89]
    Niault, T., Hached, K., Sotillo, R., Sorger, P.K., Maro, B., Benezra, R., Wassmann, K., 2007. Changing Mad2 levels affects chromosome segregation and spindle assembly checkpoint control in female mouse meiosis I. PLoS One 2, e1165.
    [90]
    Nicolaidis, P., Petersen, M.B., 1998. Origin and mechanisms of non-disjunction in human autosomal trisomies. Hum. Reprod. 13, 313-319.
    [91]
    North, B.J., Rosenberg, M.A., Jeganathan, K.B., Hafner, A.V., Michan, S., Dai, J., Baker, D.J., Cen, Y., Wu, L.E., Sauve, A.A., van Deursen, J.M., Rosenzweig, A., Sinclair, D.A., 2014. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO J. 33, 1438-1453.
    [92]
    Ocal, P., Ersoylu, B., Cepni, I., Guralp, O., Atakul, N., Irez, T., Idil, M., 2012. The association between homocysteine in the follicular fluid with embryo quality and pregnancy rate in assisted reproductive techniques. J. Assist. Reprod. Genet. 29, 299-304.
    [93]
    Pan, H., O'Brien M, J., Wigglesworth, K., Eppig, J.J., Schultz, R.M., 2005. Transcript profiling during mouse oocyte development and the effect of gonadotropin priming and development in vitro. Dev. Biol. 286, 493-506.
    [94]
    Patel, J., Tan, S.L., Hartshorne, G.M., McAinsh, A.D., 2015. Unique geometry of sister kinetochores in human oocytes during meiosis I may explain maternal age-associated increases in chromosomal abnormalities. Biol. Open 5, 178-184.
    [95]
    Peters, J.M., Tedeschi, A., Schmitz, J., 2008. The cohesin complex and its roles in chromosome biology. Genes Dev. 22, 3089-3114.
    [96]
    Qi, S.T., Wang, Z.B., Ouyang, Y.C., Zhang, Q.H., Hu, M.W., Huang, X., Ge, Z., Guo, L., Wang, Y.P., Hou, Y., Schatten, H., Sun, Q.Y., 2013. Overexpression of SETbeta, a protein localizing to centromeres, causes precocious separation of chromatids during the first meiosis of mouse oocytes. J. Cell Sci. 126, 1595-1603.
    [97]
    Qiu, D., Hou, X., Han, L., Li, X., Ge, J., Wang, Q., 2018. Sirt2-BubR1 acetylation pathway mediates the effects of advanced maternal age on oocyte quality. Aging Cell 17, e12698.
    [98]
    Ray, J.G., Meier, C., Vermeulen, M.J., Cole, D.E., Wyatt, P.R., 2003. Prevalence of trisomy 21 following folic acid food fortification. Am. J. Med. Genet. A. 120A, 309-313.
    [99]
    Revenkova, E., Herrmann, K., Adelfalk, C., Jessberger, R., 2010. Oocyte cohesin expression restricted to predictyate stages provides full fertility and prevents aneuploidy. Curr. Biol. 20, 1529-1533.
    [100]
    Reynier, P., May-Panloup, P., Chretien, M.F., Morgan, C.J., Jean, M., Savagner, F., Barriere, P., Malthiery, Y., 2001. Mitochondrial DNA content affects the fertilizability of human oocytes. Mol. Hum. Reprod. 7, 425-429.
    [101]
    Robbins, W.A., Meistrich, M.L., Moore, D., Hagemeister, F.B., Weier, H.U., Cassel, M.J., Wilson, G., Eskenazi, B., Wyrobek, A.J., 1997. Chemotherapy induces transient sex chromosomal and autosomal aneuploidy in human sperm. Nat. Genet. 16, 74-78.
    [102]
    Romero, F., Gil-Bernabe, A.M., Saez, C., Japon, M.A., Pintor-Toro, J.A., Tortolero, M., 2004. Securin is a target of the UV response pathway in mammalian cells. Mol. Cell. Biol. 24, 2720-2733.
    [103]
    Samango-Sprouse, C., Kirkizlar, E., Hall, M.P., Lawson, P., Demko, Z., Zneimer, S.M., Curnow, K.J., Gross, S., Gropman, A., 2016. Incidence of X and Y chromosomal aneuploidy in a large child bearing population. PLoS One 11, e0161045.
    [104]
    Sanders, J.R., Jones, K.T., 2018. Regulation of the meiotic divisions of mammalian oocytes and eggs. Biochem. Soc. Trans. 46, 797-806.
    [105]
    Schattman, G.L., 2018. Chromosomal mosaicism in human preimplantation embryos: another fact that cannot be ignored. Fertil. Steril. 109, 54-55.
    [106]
    Sebestova, J., Danylevska, A., Novakova, L., Kubelka, M., Anger, M., 2012. Lack of response to unaligned chromosomes in mammalian female gametes. Cell Cycle 11, 3011-3018.
    [107]
    Selesniemi, K., Lee, H.J., Muhlhauser, A., Tilly, J.L., 2011. Prevention of maternal aging-associated oocyte aneuploidy and meiotic spindle defects in mice by dietary and genetic strategies. Proc. Natl. Acad. Sci. U. S. A. 108, 12319-12324.
    [108]
    Selesniemi, K., Lee, H.J., Tilly, J.L., 2008. Moderate caloric restriction initiated in rodents during adulthood sustains function of the female reproductive axis into advanced chronological age. Aging Cell 7, 622-629.
    [109]
    Shkolnik, K., Tadmor, A., Ben-Dor, S., Nevo, N., Galiani, D., Dekel, N., 2011. Reactive oxygen species are indispensable in ovulation. Proc. Natl. Acad. Sci. U. S. A. 108, 1462-1467.
    [110]
    Silkworth, W.T., Nardi, I.K., Scholl, L.M., Cimini, D., 2009. Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS One 4, e6564.
    [111]
    Sperling, K., Neitzel, H., Scherb, H., 2012. Evidence for an increase in trisomy 21 (Down syndrome) in Europe after the Chernobyl reactor accident. Genet. Epidemiol. 36, 48-55.
    [112]
    Sperling, K., Pelz, J., Wegner, R.D., Schulzke, I., Struck, E., 1991. Frequency of trisomy 21 in Germany before and after the Chernobyl accident. Biomed. Pharmacother. 45, 255-262.
    [113]
    Takayanagi, S., Tokunaga, T., Liu, X., Okada, H., Matsushima, A., Shimohigashi, Y., 2006. Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor gamma (ERRgamma) with high constitutive activity. Toxicol. Lett. 167, 95-105.
    [114]
    Tanaka, T.U., Desai, A., 2008. Kinetochore-microtubule interactions: the means to the end. Curr. Opin. Cell. Biol. 20, 53-63.
    [115]
    Tartaglia, N.R., Ayari, N., Hutaff-Lee, C., Boada, R., 2012. Attention-deficit hyperactivity disorder symptoms in children and adolescents with sex chromosome aneuploidy: XXY, XXX, XYY, and XXYY. J. Dev. Behav. Pediatr. 33, 309-318.
    [116]
    Tilly, J.L., Sinclair, D.A., 2013. Germline energetics, aging, and female infertility. Cell. Metab. 17, 838-850.
    [117]
    Treff, N.R., Su, J., Taylor, D., Scott, R.T., Jr., 2011. Telomere DNA deficiency is associated with development of human embryonic aneuploidy. PLoS Genet. 7, e1002161.
    [118]
    Tsutsumi, M., Fujiwara, R., Nishizawa, H., Ito, M., Kogo, H., Inagaki, H., Ohye, T., Kato, T., Fujii, T., Kurahashi, H., 2014. Age-related decrease of meiotic cohesins in human oocytes. PLoS One 9, e96710.
    [119]
    Turner, S., Hartshorne, G.M., 2013. Telomere lengths in human pronuclei, oocytes and spermatozoa. Mol. Hum. Reprod. 19, 510-518.
    [120]
    Visootsak, J., Rosner, B., Dykens, E., Tartaglia, N., Graham, J.M., Jr., 2007. Behavioral phenotype of sex chromosome aneuploidies: 48,XXYY, 48,XXXY, and 49,XXXXY. Am. J. Med. Genet. A. 143A, 1198-1203.
    [121]
    Voet, T., Vanneste, E., Vermeesch, J.R., 2011. The human cleavage stage embryo is a cradle of chromosomal rearrangements. Cytogenet. Genome Res. 133, 160-168.
    [122]
    Vogt, E., Kirsch-Volders, M., Parry, J., Eichenlaub-Ritter, U., 2008. Spindle formation, chromosome segregation and the spindle checkpoint in mammalian oocytes and susceptibility to meiotic error. Mutat. Res. 651, 14-29.
    [123]
    Wai, T., Ao, A., Zhang, X., Cyr, D., Dufort, D., Shoubridge, E.A., 2010. The role of mitochondrial DNA copy number in mammalian fertility. Biol. Reprod. 83, 52-62.
    [124]
    Wai, T., Teoli, D., Shoubridge, E.A., 2008. The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat. Genet. 40, 1484-1488.
    [125]
    Wang, Q., Ratchford, A.M., Chi, M.M., Schoeller, E., Frolova, A., Schedl, T., Moley, K.H., 2009. Maternal diabetes causes mitochondrial dysfunction and meiotic defects in murine oocytes. Mol. Endocrinol. 23, 1603-1612.
    [126]
    Wang, S., Liu, Y., Shang, Y., Zhai, B., Yang, X., Kleckner, N., Zhang, L., 2019. Crossover Interference, Crossover Maturation, and Human Aneuploidy. Bioessays 41, e1800221.
    [127]
    Watanabe, Y., 2012. Geometry and force behind kinetochore orientation: lessons from meiosis. Nat. Rev. Mol. Cell Biol. 13, 370-382.
    [128]
    Webster, A., Schuh, M., 2017. Mechanisms of Aneuploidy in Human Eggs. Trends Cell Biol. 27, 55-68.
    [129]
    Wei, L., Liang, X.W., Zhang, Q.H., Li, M., Yuan, J., Li, S., Sun, S.C., Ouyang, Y.C., Schatten, H., Sun, Q.Y., 2010. BubR1 is a spindle assembly checkpoint protein regulating meiotic cell cycle progression of mouse oocyte. Cell Cycle 9, 1112-1121.
    [130]
    Wilding, M., Dale, B., Marino, M., di Matteo, L., Alviggi, C., Pisaturo, M.L., Lombardi, L., De Placido, G., 2001. Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum. Reprod. 16, 909-917.
    [131]
    Wong, W.S., Solomon, B.D., Bodian, D.L., Kothiyal, P., Eley, G., Huddleston, K.C., Baker, R., Thach, D.C., Iyer, R.K., Vockley, J.G., Niederhuber, J.E., 2016. New observations on maternal age effect on germline de novo mutations. Nat. Commun. 7, 10486.
    [132]
    Woods, L.M., Hodges, C.A., Baart, E., Baker, S.M., Liskay, M., Hunt, P.A., 1999. Chromosomal influence on meiotic spindle assembly: abnormal meiosis I in female Mlh1 mutant mice. J. Cell. Biol. 145, 1395-1406.
    [133]
    Wu, L.L., Dunning, K.R., Yang, X., Russell, D.L., Lane, M., Norman, R.J., Robker, R.L., 2010. High-fat diet causes lipotoxicity responses in cumulus-oocyte complexes and decreased fertilization rates. Endocrinology 151, 5438-5445.
    [134]
    Wu, L.L., Russell, D.L., Wong, S.L., Chen, M., Tsai, T.S., St John, J.C., Norman, R.J., Febbraio, M.A., Carroll, J., Robker, R.L., 2015. Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development 142, 681-691.
    [135]
    Wu, T.C., Wang, L., Wan, Y.J., 1992. Expression of estrogen receptor gene in mouse oocyte and during embryogenesis. Mol. Reprod. Dev. 33, 407-412.
    [136]
    Wu, X., Hu, F., Zeng, J., Han, L., Qiu, D., Wang, H., Ge, J., Ying, X., Wang, Q., 2019. NMNAT2-mediated NAD+ generation is essential for quality control of aged oocytes. Aging Cell 18, e12955.
    [137]
    Xu, Z., Cetin, B., Anger, M., Cho, U.S., Helmhart, W., Nasmyth, K., Xu, W., 2009. Structure and function of the PP2A-shugoshin interaction. Mol. Cell. 35, 426-441.
    [138]
    Yamada-Fukunaga, T., Yamada, M., Hamatani, T., Chikazawa, N., Ogawa, S., Akutsu, H., Miura, T., Miyado, K., Tarin, J.J., Kuji, N., Umezawa, A., Yoshimura, Y., 2013. Age-associated telomere shortening in mouse oocytes. Reprod. Biol. Endocrinol. 11, 108.
    [139]
    Yin, S., Wang, Q., Liu, J.H., Ai, J.S., Liang, C.G., Hou, Y., Chen, D.Y., Schatten, H., Sun, Q.Y., 2006. Bub1 prevents chromosome misalignment and precocious anaphase during mouse oocyte meiosis. Cell Cycle 5, 2130-2137.
    [140]
    Yun, Y., Holt, J.E., Lane, S.I., McLaughlin, E.A., Merriman, J.A., Jones, K.T., 2014. Reduced ability to recover from spindle disruption and loss of kinetochore spindle assembly checkpoint proteins in oocytes from aged mice. Cell Cycle 13, 1938-1947.
    [141]
    Yun, Y., Wei, Z., Hunter, N., 2019. Maternal obesity enhances oocyte chromosome abnormalities associated with aging. Chromosoma 128, 413-421.
    [142]
    Zhang, L., Hou, X., Ma, R., Moley, K., Schedl, T., Wang, Q., 2014. Sirt2 functions in spindle organization and chromosome alignment in mouse oocyte meiosis. FASEB J. 28, 1435-1445.
    [143]
    Zhang, R., Chen, X., Wang, D., Chen, X., Wang, C., Zhang, Y., Xu, M., Yu, J., 2019. Prevalence of chromosomal abnormalities identified by copy number variation sequencing in high-risk pregnancies, spontaneous abortions, and suspected genetic disorders. J. Int. Med. Res. 47, 1169-1178.
    [144]
    Zhou, Y., Mehta, K.R., Choi, A.P., Scolavino, S., Zhang, X., 2003. DNA damage-induced inhibition of securin expression is mediated by p53. J. Biol. Chem. 278, 462-470.
    [145]
    Zielinska, A.P., Bellou, E., Sharma, N., Frombach, A.S., Seres, K.B., Gruhn, J.R., Blayney, M., Eckel, H., Moltrecht, R., Elder, K., Hoffmann, E.R., Schuh, M., 2019. Meiotic kinetochores fragment into multiple lobes upon cohesin loss in aging eggs. Curr. Biol. 29, 3749-3765 e3747.
    [146]
    Zielinska, A.P., Holubcova, Z., Blayney, M., Elder, K., Schuh, M., 2015. Sister kinetochore splitting and precocious disintegration of bivalents could explain the maternal age effect. Elife 4, e11389.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures (5)

    Article Metrics

    Article views (133) PDF downloads (7) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return