[1] |
Albig, C., Wang, C., Dann, G.P., Wojcik, F., Schauer, T., Krause, S., Maenner, S., Cai, W., Li, Y., Girton, J., Muir, T.W., Johansen, J., Johansen, K.M., Becker, P.B., Regnard, C., 2019. JASPer controls interphase histone H3S10 phosphorylation by chromosomal kinase JIL-1 in Drosophila. Nat. Commun. 10, 5343.
|
[2] |
Bannister, A.J., Schneider, R., Myers, F.A., Thorne, A.W., Crane-Robinson, C., Kouzarides, T., 2005. Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J. Biol. Chem. 280, 17732-17736.
|
[3] |
Bao, X., Deng, H., Johansen, J., Girton, J., Johansen, K.M., 2007. Loss-of-function alleles of the JIL-1 histone H3S10 kinase enhance position-effect variegation at pericentric sites in Drosophila heterochromatin. Genetics 176, 1355-1358.
|
[4] |
Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I., Zhao, K., 2007. High-resolution profiling of histone methylations in the human genome. Cell 129, 823-837.
|
[5] |
Cai, W., Wang, C., Li, Y., Yao, C., Shen, L., Liu, S., Bao, X., Schnable, P.S., Girton, J., Johansen, J., Johansen, K.M., 2014. Genome-wide analysis of regulation of gene expression and H3K9me2 distribution by JIL-1 kinase mediated histone H3S10 phosphorylation in Drosophila. Nucleic Acids Res. 42, 5456-5467.
|
[6] |
Caro, E., Stroud, H., Greenberg, M.V., Bernatavichute, Y.V., Feng, S., Groth, M., Vashisht, A.A., Wohlschlegel, J., Jacobsen, S.E., 2012. The SET-domain protein SUVR5 mediates H3K9me2 deposition and silencing at stimulus response genes in a DNA methylation-independent manner. PLoS Genet. 8, e1002995.
|
[7] |
Cherepanov, P., Devroe, E., Silver, P.A., Engelman, A., 2004. Identification of an evolutionarily conserved domain in human lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF/p75) that binds HIV-1 integrase. J. Biol. Chem. 279, 48883-48892.
|
[8] |
Cherepanov, P., Maertens, G., Proost, P., Devreese, B., Van Beeumen, J., Engelborghs, Y., De Clercq, E., Debyser, Z., 2003. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J. Biol. Chem. 278, 372-381.
|
[9] |
Czech, B., Preall, J.B., McGinn, J., Hannon, G.J., 2013. A transcriptome-wide RNAi screen in the Drosophila ovary reveals factors of the germline piRNA pathway. Mol. Cell 50, 749-761.
|
[10] |
De Rijck, J., Bartholomeeusen, K., Ceulemans, H., Debyser, Z., Gijsbers, R., 2010. High-resolution profiling of the LEDGF/p75 chromatin interaction in the ENCODE region. Nucleic Acids Res. 38, 6135-6147.
|
[11] |
Deng, H., Bao, X., Zhang, W., Girton, J., Johansen, J., Johansen, K.M., 2007. Reduced levels of Su(var)3-9 but not Su(var)2-5 (HP1) counteract the effects on chromatin structure and viability in loss-of-function mutants of the JIL-1 histone H3S10 kinase. Genetics 177, 79-87.
|
[12] |
Eidahl, J.O., Crowe, B.L., North, J.A., McKee, C.J., Shkriabai, N., Feng, L., Plumb, M., Graham, R.L., Gorelick, R.J., Hess, S., Poirier, M.G., Foster, M.P., Kvaratskhelia, M., 2013. Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Res. 41, 3924-3936.
|
[13] |
Ferris, A.L., Wu, X., Hughes, C.M., Stewart, C., Smith, S.J., Milne, T.A., Wang, G.G., Shun, M.C., Allis, C.D., Engelman, A., Hughes, S.H., 2010. Lens epithelium-derived growth factor fusion proteins redirect HIV-1 DNA integration. Proc. Natl. Acad. Sci. U. S. A. 107, 3135-3140.
|
[14] |
Gijsbers, R., Ronen, K., Vets, S., Malani, N., De Rijck, J., McNeely, M., Bushman, F.D., Debyser, Z., 2010. LEDGF hybrids efficiently retarget lentiviral integration into heterochromatin. Mol. Ther. 18, 552-560.
|
[15] |
Han, B.W., Wang, W., Li, C., Weng, Z., Zamore, P.D., 2015. Noncoding RNA. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production. Science 348, 817-821.
|
[16] |
Handler, D., Olivieri, D., Novatchkova, M., Gruber, F.S., Meixner, K., Mechtler, K., Stark, A., Sachidanandam, R., Brennecke, J., 2011. A systematic analysis of Drosophila TUDOR domain-containing proteins identifies Vreteno and the Tdrd12 family as essential primary piRNA pathway factors. EMBO J. 30, 3977-3993.
|
[17] |
Jin, Y., Wang, Y., Walker, D.L., Dong, H., Conley, C., Johansen, J., Johansen, K.M., 1999. JIL-1: a novel chromosomal tandem kinase implicated in transcriptional regulation in Drosophila. Mol. Cell 4, 129-135.
|
[18] |
Klusza, S., Deng, W.M., 2010. poly is required for nurse-cell chromosome dispersal and oocyte polarity in Drosophila. Fly (Austin) 4, 128-136.
|
[19] |
Kolasinska-Zwierz, P., Down, T., Latorre, I., Liu, T., Liu, X.S., Ahringer, J., 2009. Differential chromatin marking of introns and expressed exons by H3K36me3. Nat. Genet. 41, 376-381.
|
[20] |
Li, Y., Cai, W., Wang, C., Yao, C., Bao, X., Deng, H., Girton, J., Johansen, J., Johansen, K.M., 2013. Domain requirements of the JIL-1 tandem kinase for histone H3 serine 10 phosphorylation and chromatin remodeling in vivo. J. Biol. Chem. 288, 19441-19449.
|
[21] |
Llano, M., Vanegas, M., Hutchins, N., Thompson, D., Delgado, S., Poeschla, E.M., 2006. Identification and characterization of the chromatin-binding domains of the HIV-1 integrase interactor LEDGF/p75. J. Mol. Biol. 360, 760-773.
|
[22] |
Mereau, H., De Rijck, J., Cermakova, K., Kutz, A., Juge, S., Demeulemeester, J., Gijsbers, R., Christ, F., Debyser, Z., Schwaller, J., 2013. Impairing MLL-fusion gene-mediated transformation by dissecting critical interactions with the lens epithelium-derived growth factor (LEDGF/p75). Leukemia 27, 1245-1253.
|
[23] |
Qin, S., Min, J., 2014. Structure and function of the nucleosome-binding PWWP domain. Trends Biochem. Sci. 39, 536-547.
|
[24] |
Reeves, R., Nissen, M.S., 1990. The A.T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J. Biol. Chem. 265, 8573-8582.
|
[25] |
Regnard, C., Straub, T., Mitterweger, A., Dahlsveen, I.K., Fabian, V., Becker, P.B., 2011. Global analysis of the relationship between JIL-1 kinase and transcription. PLoS Genet. 7, e1001327.
|
[26] |
Reyskens, K.M., Arthur, J.S., 2016. Emerging Roles of the Mitogen and Stress Activated Kinases MSK1 and MSK2. Front. Cell Dev. Biol. 4, 56.
|
[27] |
Shun, M.C., Botbol, Y., Li, X., Di Nunzio, F., Daigle, J.E., Yan, N., Lieberman, J., Lavigne, M., Engelman, A., 2008. Identification and characterization of PWWP domain residues critical for LEDGF/p75 chromatin binding and human immunodeficiency virus type 1 infectivity. J. Virol. 82, 11555-11567.
|
[28] |
Staeva-Vieira, E., Yoo, S., Lehmann, R., 2003. An essential role of DmRad51/SpnA in DNA repair and meiotic checkpoint control. EMBO J. 22, 5863-5874.
|
[29] |
Sutherland, H.G., Newton, K., Brownstein, D.G., Holmes, M.C., Kress, C., Semple, C.A., Bickmore, W.A., 2006. Disruption of Ledgf/Psip1 results in perinatal mortality and homeotic skeletal transformations. Mol. Cell Biol. 26, 7201-7210.
|
[30] |
Tesina, P., Cermakova, K., Horejsi, M., Prochazkova, K., Fabry, M., Sharma, S., Christ, F., Demeulemeester, J., Debyser, Z., Rijck, J., Veverka, V., Rezacova, P., 2015. Multiple cellular proteins interact with LEDGF/p75 through a conserved unstructured consensus motif. Nat. Commun. 6, 7968.
|
[31] |
Turlure, F., Maertens, G., Rahman, S., Cherepanov, P., Engelman, A., 2006. A tripartite DNA-binding element, comprised of the nuclear localization signal and two AT-hook motifs, mediates the association of LEDGF/p75 with chromatin in vivo. Nucleic Acids Res. 34, 1653-1665.
|
[32] |
Vanegas, M., Llano, M., Delgado, S., Thompson, D., Peretz, M., Poeschla, E., 2005. Identification of the LEDGF/p75 HIV-1 integrase-interaction domain and NLS reveals NLS-independent chromatin tethering. J. Cell Sci. 118, 1733-1743.
|
[33] |
Wang, Y., Zhang, W., Jin, Y., Johansen, J., Johansen, K.M., 2001. The JIL-1 tandem kinase mediates histone H3 phosphorylation and is required for maintenance of chromatin structure in Drosophila. Cell 105, 433-443.
|
[34] |
Wang, C.I., Alekseyenko, A.A., LeRoy, G., Elia, A.E., Gorchakov, A.A., Britton, L.M., Elledge, S.J., Kharchenko, P.V., Garcia, B.A., Kuroda, M.I., 2013. Chromatin proteins captured by ChIP-mass spectrometry are linked to dosage compensation in Drosophila. Nat. Struct. Mol. Biol. 20, 202-209.
|
[35] |
Wiersma, M., Bussiere, M., Halsall, J.A., Turan, N., Slany, R., Turner, B.M., Nightingale, K.P., 2016. Protein kinase Msk1 physically and functionally interacts with the KMT2A/MLL1 methyltransferase complex and contributes to the regulation of multiple target genes. Epigenetics Chromatin 9, 52.
|
[36] |
Yasuhara, J.C., Wakimoto, B.T., 2008. Molecular landscape of modified histones in Drosophila heterochromatic genes and euchromatin-heterochromatin transition zones. PLoS Genet. 4, e16.
|
[37] |
Yokoyama, A., Cleary, M.L., 2008. Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 14, 36-46.
|
[38] |
Zhang, W., Jin, Y., Ji, Y., Girton, J., Johansen, J., Johansen, K.M., 2003. Genetic and phenotypic analysis of alleles of the Drosophila chromosomal JIL-1 kinase reveals a functional requirement at multiple developmental stages. Genetics 165, 1341-1354.
|
[39] |
Zhang, L., Kasif, S., Cantor, C.R., Broude, N.E., 2004. GC/AT-content spikes as genomic punctuation marks. Proc. Natl. Acad. Sci. U. S. A. 101, 16855-16860.
|
[40] |
Zhang, W., Deng, H., Bao, X., Lerach, S., Girton, J., Johansen, J., Johansen, K.M., 2006. The JIL-1 histone H3S10 kinase regulates dimethyl H3K9 modifications and heterochromatic spreading in Drosophila. Development 133, 229-235.
|
[41] |
Zhang, Z., Theurkauf, W.E., Weng, Z., Zamore, P.D., 2012. Strand-specific libraries for high throughput RNA sequencing (RNA-Seq) prepared without poly(A) selection. Silence 3, 9.
|