5.9
CiteScore
5.9
Impact Factor
Volume 47 Issue 1
Jan.  2020
Turn off MathJax
Article Contents

Efficient generation of zebrafish maternal-zygotic mutants through transplantation of ectopically induced and Cas9/gRNA targeted primordial germ cells

doi: 10.1016/j.jgg.2019.12.004
More Information
  • Corresponding author: E-mail address: yhsun@ihb.ac.cn (Yonghua Sun)
  • Publish Date: 2020-01-25
  • The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology has been widely utilized for knocking out genes involved in various biological processes in zebrafish. Despite this technology is efficient for generating different mutations, one of the main drawbacks is low survival rate during embryogenesis when knocking out some embryonic lethal genes. To overcome this problem, we developed a novel strategy using a combination of CRISPR/Cas9 mediated gene knockout with primordial germ cell (PGC) transplantation (PGCT) to facilitate and speed up the process of zebrafish mutant generation, particularly for embryonic lethal genes. Firstly, we optimized the procedure for CRISPR/Cas9 targeted PGCT by increasing the efficiencies of genome mutation in PGCs and induction of PGC fates in donor embryos for PGCT. Secondly, the optimized CRISPR/Cas9 targeted PGCT was utilized for generation of maternal-zygotic (MZ) mutants oftcf7l1a (gene essential for head development), pou5f3 (gene essential for zygotic genome activation) and chd (gene essential for dorsal development) at F1 generation with relatively high efficiency. Finally, we revealed some novel phenotypes in MZ mutants of tcf7l1a and chd, as MZtcf7l1a showed elevated neural crest development while MZchd had much severer ventralization than its zygotic counterparts. Therefore, this study presents an efficient and powerful method for generating MZ mutants of embryonic lethal genes in zebrafish. It is also feasible to speed up the genome editing in commercial fishes by utilizing a similar approach by surrogate production of CRISPR/Cas9 targeted germ cells.
  • loading
  • [1]
    Bassett, A.R., Tibbit, C., Ponting, C.P., Liu, J.L., 2013. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4, 220-228.
    [2]
    Bontems, F., Stein, A., Marlow, F., Lyautey, J., Gupta, T., Mullins, M.C., Dosch, R., 2009. Bucky ball organizes germ plasm assembly in zebrafish. Curr Biol 19, 414-422.
    [3]
    Branam, A.M., Hoffman, G.G., Pelegri, F., Greenspan, D.S., 2010. Zebrafish chordin-like and chordin are functionally redundant in regulating patterning of the dorsoventral axis. Dev Biol 341, 444-458.
    [4]
    Brion, F., Tyler, C.R., Palazzi, X., Laillet, B., Porcher, J.M., Garric, J., Flammarion, P., 2004. Impacts of 17 beta-estradiol, including environmentally relevant concentrations, on reproduction after exposure during embryo-larval-, juvenile- and adult-life stages in zebrafish (Danio rerio). Aquat Toxicol.68, 193-217.
    [5]
    Burgess, S., Reim, G., Chen, W.B., Hopkins, N., Brand, M., 2002. The zebrafish spiel-ohne-grenzen (spg) gene encodes the POU domain protein Pou2 related to mammalian Oct4 and is essential for formation of the midbrain and hindbrain, and for pre-gastrula morphogenesis. Development 129, 905-916.
    [6]
    Chang, N., Sun, C., Gao, L., Zhu, D., Xu, X., Zhu, X., Xiong, J.W., Xi, J.J., 2013. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23, 465-472.
    [7]
    Ciruna, B., Weidinger, G., Knaut, H., Thisse, B., Thisse, C., Raz, E., Schier, A.F., 2002. Production of maternal-zygotic mutant zebrafish by germ-line replacement. Proc. Natl. Acad. Sci. U. S. A. 99, 14919-14924.
    [8]
    Dosch, R., Wagner, D.S., Mintzer, K.A., Runke, G., Wiemelt, A.P., Mullins, M.C., 2004. Maternal control of vertebrate development before the midblastula transition: mutants from the zebrafish I. Dev Cell 6, 771-780.
    [9]
    Gritsman, K., Zhang, J.J., Cheng, S., Heckscher, E., Talbot, W.S., Schier, A.F., 1999. The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97, 121-132.
    [10]
    Hammerschmidt, M., Pelegri, F., Mullins, M.C., Kane, D.A., van Eeden, F.J., Granato, M., Brand, M., Furutani-Seiki, M., Haffter, P., Heisenberg, C.P., Jiang, Y.J., Kelsh, R.N., Odenthal, J., Warga, R.M., Nusslein-Volhard, C., 1996. dino and mercedes, two genes regulating dorsal development in the zebrafish embryo. Development 123, 95-102.
    [11]
    Harvey, S.A., Sealy, I., Kettleborough, R., Fenyes, F., White, R., Stemple, D., Smith, J.C., 2013. Identification of the zebrafish maternal and paternal transcriptomes. Development 140, 2703-2710.
    [12]
    He, M.D., Zhang, F.H., Wang, H.L., Wang, H.P., Zhu, Z.Y., Sun, Y.H., 2015. Efficient ligase 3-dependent microhomology-mediated end joining repair of DNA double-strand breaks in zebrafish embryos. Mutat Res 780, 86-96.
    [13]
    Heyn, P., Kalinka, A.T., Tomancak, P., Neugebauer, K.M., 2015. Introns and gene expression: cellular constraints, transcriptional regulation, and evolutionary consequences. Bioessays 37, 148-154.
    [14]
    Hruscha, A., Krawitz, P., Rechenberg, A., Heinrich, V., Hecht, J., Haass, C., Schmid, B., 2013. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140, 4982-4987.
    [15]
    Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Yeh, J.R., Joung, J.K., 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31, 227-229.
    [16]
    Kim, C.H., Oda, T., Itoh, M., Jiang, D., Artinger, K.B., Chandrasekharappa, S.C., Driever, W., Chitnis, A.B., 2000. Repressor activity of headless/Tcf3 is essential for vertebrate head formation. Nature 407, 913-916.
    [17]
    Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F., 1995. Stages of embryonic development of the zebrafish. Dev Dyn 203, 253-310.
    [18]
    Koprunner, M., Thisse, C., Thisse, B., Raz, E., 2001. A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes Dev. 15, 2877-2885.
    [19]
    Krishnakumar, P., Riemer, S., Perera, R., Lingner, T., Goloborodko, A., Khalifa, H., Bontems, F., Kaufholz, F., El-Brolosy, M.A., Dosch, R., 2018. Functional equivalence of germ plasm organizers. PLoS Genet 14, e1007696.
    [20]
    Lacerda, S., Costa, G., Campos-Junior, P., Segatelli, T., Yazawa, R., Takeuchi, Y., Morita, T., Yoshizaki, G., Franca, L., 2013. Germ cell transplantation as a potential biotechnological approach to fish reproduction. Fish Physiol Biochem 39, 3-11.
    [21]
    Lee, M.T., Bonneau, A.R., Takacs, C.M., Bazzini, A.A., DiVito, K.R., Fleming, E.S., Giraldez, A.J., 2013. Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature 503, 360-364.
    [22]
    Lewis, J.L., Bonner, J., Modrell, M., Ragland, J.W., Moon, R.T., Dorsky, R.I., Raible, D.W., 2004. Reiterated Wnt signaling during zebrafish neural crest development. Development 131, 1299-1308.
    [23]
    Liu, Y., Zhang, C., Zhang, Y., Lin, S., Shi, D.L., Shao, M., 2018. Highly efficient genome editing using oocyte-specific zcas9 transgenic zebrafish. J. Genet. Genomics. 45, 509-512.
    [24]
    Moreno-Mateos, M.A., Vejnar, C.E., Beaudoin, J.D., Fernandez, J.P., Mis, E.K., Khokha, M.K., Giraldez, A.J., 2015. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods 12, 982-988.
    [25]
    Nasevicius, A., Ekker, S.C., 2000. Effective targeted gene 'knockdown' in zebrafish. Nat. Genet. 26, 216-220.
    [26]
    Patton, E.E., Zon, L.I., 2001. The art and design of genetic screens: zebrafish. Nat Rev Genet 2, 956-966.
    [27]
    Reim, G., Brand, M., 2006. Maternal control of vertebrate dorsoventral axis formation and epiboly by the POU domain protein Spg/Pou2/Oct4. Development 133, 2757-2770.
    [28]
    Reim, G., Mizoguchi, T., Stainier, D.Y., Kikuchi, Y., Brand, M., 2004. The POU domain protein Spg (Pou2/Oct4) is essential for endoderm formation in cooperation with the HMG domain protein Casanova. Dev. Cell 6, 91-101.
    [29]
    Saito, T., Goto-Kazeto, R., Arai, K., Yamaha, E., 2008. Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biol Reprod 78, 159-166.
    [30]
    Schulte-Merker, S., Lee, K.J., McMahon, A.P., Hammerschmidt, M., 1997. The zebrafish organizer requires chordino. Nature 387, 862-863.
    [31]
    Sun, Y., Zhang, B., Luo, L., Shi, D.-L., Cui, Z., Huang, H., Cao, Y., Shu, X., Zhang, W., Zhou, J., Li, Y., Du, J., Zhao, Q., Chen, J., Zhong, H., Zhong, T.P., Li, L., Xiong, J.-W., Peng, J., Xiao, W., Zhang, J., Yao, J., Yin, Z., Mo, X., Peng, G., Zhu, J., Chen, Y., Zhou, Y., Liu, D., Pan, W., Zhang, Y., Ruan, H., Liu, F., Zhu, Z., Meng, A., 2020. Systematical genome editing of the genes in zebrafish Chromosome 1 by CRISPR/Cas9. Genome Research, 30: 118-126.
    [32]
    Sun, Y.H., 2017. Genome editing opens a new era for physiological study and directional breeding of fishes. Sci. Bull. 62, 157-158.
    [33]
    Thyme, S.B., Schier, A.F., 2016. Polq-Mediated End Joining Is Essential for Surviving DNA Double-Strand Breaks during Early Zebrafish Development (vol 15, pg 707, 2016). Cell Rep. 15, 1611-1613.
    [34]
    Tzung, K.W., Goto, R., Saju, J.M., Sreenivasan, R., Saito, T., Arai, K., Yamaha, E., Hossain, M.S., Calvert, M.E., Orban, L., 2015. Early depletion of primordial germ cells in zebrafish promotes testis formation. Stem Cell Rep. 5, 156.
    [35]
    Tzur, Y.B., Friedland, A.E., Nadarajan, S., Church, G.M., Calarco, J.A., Colaiacovo, M.P., 2013. Heritable custom genomic modifications in Caenorhabditis elegans via a CRISPR-Cas9 system. Genetics 195, 1181-1185.
    [36]
    Veil, M., Schaechtle, M.A., Gao, M., Kirner, V., Buryanova, L., Grethen, R., Onichtchouk, D., 2018. Maternal Nanog is required for zebrafish embryo architecture and for cell viability during gastrulation. Development 145.
    [37]
    Wagner, D.S., Dosch, R., Mintzer, K.A., Wiemelt, A.P., Mullins, M.C., 2004. Maternal control of development at the midblastula transition and beyond: mutants from the zebrafish II. Dev Cell 6, 781-790.
    [38]
    Wei, C.Y., Wang, H.P., Zhu, Z.Y., Sun, Y.H., 2014. Transcriptional factors smad1 and smad9 act redundantly to mediate zebrafish ventral specification downstream of smad5. J Biol Chem 289, 6604-6618.
    [39]
    Weidinger, G., Stebler, J., Slanchev, K., Dumstrei, K., Wise, C., Lovell-Badge, R., Thisse, C., Thisse, B., Raz, E., 2003. dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Cur. Biol. 13, 1429-1434.
    [40]
    Welten, M.C., de Haan, S.B., van den Boogert, N., Noordermeer, J.N., Lamers, G.E., Spaink, H.P., Meijer, A.H., Verbeek, F.J., 2006. ZebraFISH: fluorescent in situ hybridization protocol and three-dimensional imaging of gene expression patterns. Zebrafish 3, 465-476.
    [41]
    Xiong, F., Wei, Z.Q., Zhu, Z.Y., Sun, Y.H., 2013. Targeted expression in zebrafish primordial germ cells by Cre/loxP and Gal4/UAS systems. Mar Biotechnol (NY) 15, 526-539.
    [42]
    Ye, D., Zhu, L., Zhang, Q., Xiong, F., Wang, H., Wang, X., He, M., Zhu, Z., Sun, Y., 2019. Abundance of Early Embryonic Primordial Germ Cells Promotes Zebrafish Female Differentiation as Revealed by Lifetime Labeling of Germline. Mar Biotechnol (NY) 21, 217-228.
    [43]
    Zhang, F.H., Wang, H.P., Huang, S.Y., Xiong, F., Zhu, Z.Y., Sun, Y., 2016. A comparison of the knockout efficiencies of two codon-optimized Cas9 coding sequences in zebrafish embryos. Hereditas(Beijing) 38, 144-154 (in Chinese with an English abstract).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures (5)  / Tables (1)

    Article Metrics

    Article views (109) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return