[1] |
Angala, S.K., Belardinelli, J.M., Huc-Claustre, E., Wheat, W.H., Jackson, M., 2014. The cell envelope glycoconjugates of Mycobacterium tuberculosis. Crit. Rev. Biochem. Mol. Biol. 49, 361-399.
|
[2] |
Biswas, R.K., Dutta, D., Tripathi, A., Feng, Y., Banerjee, M., Singh, B.N., 2013. Identification and characterization of Rv0494: a fatty acid-responsive protein of the GntR/FadR family from Mycobacterium tuberculosis. Microbiology 159, 913-923.
|
[3] |
Boldrin, F., Ventura, M., Degiacomi, G., Ravishankar, S., Sala, C., Svetlikova, Z., Ambady, A., Dhar, N., Kordulakova, J., Zhang, M., Serafini, A., Vishwas, K.G., Kolly, G.S., Kumar, N., Palu, G., Guerin, M.E., Mikusova, K., Cole, S.T., Manganelli, R., 2014. The phosphatidyl-myo-inositol mannosyltransferase PimA is essential for Mycobacterium tuberculosis growth in vitro and in vivo. J. Bacteriol. 196, 3441-3451.
|
[4] |
Cambier, C.J., Takaki, K.K., Larson, R.P., Hernandez, R.E., Tobin, D.M., Urdahl, K.B., Cosma, C.L., Ramakrishnan, L., 2014. Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature 505, 218-222.
|
[5] |
Chen, J.M., German, G.J., Alexander, D.C., Ren, H., Tan, T., Liu, J., 2006. Roles of Lsr2 in colony morphology and biofilm formation of Mycobacterium smegmatis. J. Bacteriol. 188, 633-641.
|
[6] |
Choi, J.A., Lim, Y.J., Cho, S.N., Lee, J.H., Jeong, J.A., Kim, E.J., Park, J.B., Kim, S.H., Park, H.S., Kim, H.J., Song, C.H., 2013. Mycobacterial HBHA induces endoplasmic reticulum stress-mediated apoptosis through the generation of reactive oxygen species and cytosolic Ca2+ in murine macrophage RAW 264.7 cells. Cell Death Dis. 4:e957.
|
[7] |
Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K., Gas, S., Barry, C.E. 3rd., Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Krogh, A., McLean, J., Moule, S., Murphy, L., Oliver, K., Osborne, J., Quail, M.A., Rajandream, M.A., Rogers, J., Rutter, S., Seeger, K., Skelton, J., Squares, R., Squares, S., Sulston, J.E., Taylor, K., Whitehead, S., Barrell, B.G., 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537-544.
|
[8] |
Doz, E., Rose, S., Court, N., Front, S., Vasseur, V., Charron, S., Gilleron, M., Puzo, G., Fremaux, I., Delneste, Y., Erard, F., Ryffel, B., Martin, O.R., Quesniaux, V.F., 2009. Mycobacterial phosphatidylinositol mannosides negatively regulate host Toll-like receptor 4, MyD88-dependent proinflammatory cytokines, and TRIF-dependent co-stimulatory molecule expression. J. Biol. Chem. 284, 23187-23196.
|
[9] |
Drage, M.G., Tsai, H.C., Pecora, N.D., Cheng, T.Y., Arida, A.R., Shukla, S., Rojas, R.E., Seshadri, C., Moody, D.B., Boom, W.H., Sacchettini, J.C., Harding, C.V., 2010. Mycobacterium tuberculosis lipoprotein LprG (Rv1411c) binds triacylated glycolipid agonists of Toll-like receptor 2. Nat. Struct. Mol. Biol. 17, 1088-1095.
|
[10] |
Fan, L., Wu, X., Jin, C., Li, F., Xiong, S., Dong Y., 2018. MptpB promotes Mycobacteria survival by inhibiting the expression of inflammatory mediators and cell apoptosis in macrophages. Front. Cell. Infect. Microbiol. 8, 171.
|
[11] |
Fischer, K., Scotet, E., Niemeyer, M., Koebernick, H., Zerrahn, J., Maillet, S., Hurwitz, R., Kursar, M., Bonneville, M., Kaufmann, S.H., Schaible, U.E., 2004. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc. Natl. Acad. Sci. U. S. A. 101, 10685-10690.
|
[12] |
Fukuda, T., Matsumura, T., Ato, M., Hamasaki, M., Nishiuchi, Y., Murakami, Y., Maeda, Y., Yoshimori, T., Matsumoto, S., Kobayashi, K., Kinoshita, T., Morita, Y.S., 2013. Critical roles for lipomannan and lipoarabinomannan in cell wall integrity of mycobacteria and pathogenesis of tuberculosis. MBio 4, e00472-12.
|
[13] |
Gao, C.H., Yang, M., He, Z.G., 2012. Characterization of a novel ArsR-like regulator encoded by Rv2034 in Mycobacterium tuberculosis. PLoS One 7, e36255.
|
[14] |
Gaur, R.L., Ren, K., Blumenthal, A., Bhamidi, S., Gibbs, S., Jackson, M., Zare, R.N., Ehrt, S., Ernst, J.D., Banaei, N., 2015. LprG-mediated surface expression of lipoarabinomannan is essential for virulence of Mycobacterium tuberculosis. PLoS Pathog. 11, e1005336.
|
[15] |
Gilleron, M., Ronet, C., Mempel, M., Monsarrat, B., Gachelin, G., Puzo, G., 2001. Acylation state of the phosphatidylinositol mannosides from Mycobacterium bovis bacillus Calmette Guerin and ability to induce granuloma and recruit natural killer T cells. J. Biol. Chem. 276, 34896-34904.
|
[16] |
Gilleron, M., Quesniaux, V.F., Puzo, G., 2003. Acylation state of the phosphatidylinositol hexamannosides from Mycobacterium bovis bacillus Calmette Guerin and Mycobacterium tuberculosis H37Rv and its implication in Toll-like receptor response. J. Biol. Chem. 278, 29880-29889.
|
[17] |
Glass, L.N., Swapna, G., Chavadi, S.S., Tufariello, J.M., Mi, K., Drumm, J.E., Lam, T.T., Zhu, G., Zhan, C., Vilcheze, C., Arcos, J., Chen, Y., Bi, L., Mehta, S., Porcelli, S.A., Almo, S.C., Yeh, S.R., Jacobs, W.R. Jr., Torrelles, J.B., Chan, J., 2017. Mycobacterium tuberculosis universal stress protein Rv2623 interacts with the putative ATP binding cassette (ABC) transporter Rv1747 to regulate mycobacterial growth. PLoS Pathog. 13, e1006515.
|
[18] |
Gonzalo Asensio, J., Maia, C., Ferrer, N.L., Barilone, N., Laval, F., Soto, C.Y., Winter, N., Daffe, M., Gicquel, B., Martin, C., Jackson, M., 2006. The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J. Biol. Chem. 2813, 1313-1316.
|
[19] |
Goren, M.B., 1984. Biosynthesis and structures of phospholipids and sulfatides, in: Kubica, G.P., Wayne, L.G. (Eds.), The Mycobacteria. Marcel Dekker Inc., New York, pp. 370-415.
|
[20] |
Guerin, M.E., Kaur, D., Somashekar, B.S., Gibbs, S., Gest, P., Chatterjee, D., Brennan, P.J., Jackson, M., 2009. New Insights into the Early Steps of Phosphatidylinositol Mannoside Biosynthesis in Mycobacteria: PimB′ is an essential enzyme of Mycobacterium smegmatis. J. Biol. Chem. 284, 25687-25696.
|
[21] |
Guerin, M.E., Kordulakova, J., Alzari, P.M., Brennan, P.J., Jackson, M., 2010. Molecular basis of phosphatidyl-myo-inositol mannoside biosynthesis and regulation in mycobacteria. J. Biol. Chem. 285, 33577-33583.
|
[22] |
Howard, N.C., Marin, N.D., Ahmed, M., Rosa, B.A., Martin, J., Bambouskova, M., Sergushichev, A., Loginicheva, E., Kurepina, N., Rangel-Moreno, J., Chen, L., Kreiswirth, B.N., Klein, R.S., Balada-Llasat, J.M., Torrelles, J.B., Amarasinghe, G.K., Mitreva, M., Artyomov, M.N., Hsu, F.F., Mathema, B., Khader, S.A., 2018. Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes. Nat. Microbiol. 3, 1327.
|
[23] |
Hsu, F.F., Turk, J., Owens, R.M., Rhoades, E.R., Russell, D.G., 2007. Structural characterization of phosphatidyl-myo-inositol mannosides from Mycobacterium bovis Bacillus Calmette Guerin by multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. II. Monoacyl-and diacyl-PIMs. J. Am. Soc. Mass Spectrom. 18, 479-492.
|
[24] |
Jankute, M., Grover, S., Birch, H.L., Besra, G.S., 2014. Genetics of mycobacterial arabinogalactan and lipoarabinomannan assembly. Microbiol. Spectr. 2, MGM2-0013-2013.
|
[25] |
Layre, E., Sweet, L., Hong, S., Madigan, C.A., Desjardins, D., Young, D.C., Cheng, T.Y., Annand, J.W., Kim, K., Shamputa, I.C., McConnell, M.J., Debono, C.A., Behar, S.M., Minnaard, A.J., Murray, M., Barry, C.E. 3rd., Matsunaga, I., Moody, D.B., 2011. A comparative lipidomics platform for chemotaxonomic analysis of Mycobacterium tuberculosis. Chem. Biol. 18, 1537-1549.
|
[26] |
Lee, H.J., Ko, H.J., Song, D.K., Jung, Y.J., 2018. Lysophosphatidylcholine Promotes Phagosome Maturation and Regulates Inflammatory Mediator Production Through the Protein Kinase A-Phosphatidylinositol 3 Kinase-p38 Mitogen-Activated Protein Kinase Signaling Pathway During Mycobacterium tuberculosis Infection in Mouse Macrophages. Front. Immunol. 9, 920.
|
[27] |
Li, W., He, Z.G., 2012. LtmA, a novel cyclic di-GMP-responsive activator, broadly regulates the expression of lipid transport and metabolism genes in Mycobacterium smegmatis. Nucleic Acids Res. 40, 11292-11307.
|
[28] |
Li, W., Li, M., Hu, L., Zhu, J., Xie, Z., Chen, J., He, Z.G., 2018. HpoR, a novel c-di-GMP effective transcription factor, links the second messenger’s regulatory function to the mycobacterial antioxidant defense. Nucleic Acids Res. 46, 3595-3611.
|
[29] |
Liu, X.X., Shen, M.J., Liu, W.B., Ye, B.C., 2018. Transcriptional and post-translational regulation of AccD6 in Mycobacterium smegmatis. FEMS Microbiol. Lett. 365, doi: 10.1093/femsle/fny074.
|
[30] |
Liu, Y., Wang, H., Cui, T., Zhou, X., Jia, Y., Zhang, H., He, Z.G., 2016. NapM, a new nucleoid-associated protein, broadly regulates gene expression and affects mycobacterial resistance to anti-tuberculosis drugs. Mol. Microbiol. 101, 167-181.
|
[31] |
Liu, Y.G., Chen, Y., 2007. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques 43, 649-656.
|
[32] |
Mondino, S., Gago, G., Gramajo, H., 2013. Transcriptional regulation of fatty acid biosynthesis in mycobacteria. Mol. Microbiol. 89, 372-387.
|
[33] |
Morita, Y.S., Sena, C.B., Waller, R.F., Kurokawa, K., Sernee, M.F., Nakatani, F., Haites, R.E., Billman-Jacobe, H., McConville, M.J., Maeda, Y., Kinoshita, T., 2006. PimE is a polyprenol-phosphate-mannose-dependent mannosyltransferase that transfers the fifth mannose of phosphatidylinositol mannoside in mycobacteria. J. Biol. Chem. 281, 25143-25155.
|
[34] |
Ojha, A., Anand, M., Bhatt, A., Kremer, L., Jacobs, W.R. Jr., Hatfull, G.F., 2005. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123, 861-873.
|
[35] |
Ojha, A.K., Baughn, A.D., Sambandan, D., Hsu, T., Trivelli, X., Guerardel, Y., Alahari, A., Kremer, L., Jacobs, W.R. Jr., Hatfull, G.F., 2008. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol. Microbiol. 69, 164-174.
|
[36] |
Parish, T., Liu, J., Nikaido, H., Stoker, N.G., 1997. A Mycobacterium smegmatis mutant with a defective inositol monophosphate phosphatase gene homolog has altered cell envelope permeability. J. Bacteriol. 179, 7827-7833.
|
[37] |
Quigley, J., Hughitt, V.K., Velikovsky, C.A., Mariuzza, R.A., El-Sayed, N.M, Briken, V., 2017. The cell wall lipid PDIM contributes to phagosomal escape and host cell exit of Mycobacterium tuberculosis. MBio 8, e00148-17.
|
[38] |
Recht, J., Martinez, A., Torello, S., Kolter, R., 2000. Genetic Analysis of Sliding Motility in Mycobacterium smegmatis. J. Bacteriol. 182, 4348-4351.
|
[39] |
Salzman, V., Mondino, S., Sala, C., Cole, S.T., Gago, G., Gramajo, H., 2010. Transcriptional regulation of lipid homeostasis in mycobacteria. Mol. Microbiol. 78, 64-77.
|
[40] |
Sartain, M.J., Dick, D.L., Rithner, C.D., Crick, D.C., Belisle, J.T., 2011. Lipidomic analyses of Mycobacterium tuberculosis based on accurate mass measurements and the novel “Mtb LipidDB”. J. Lipid Res. 52, 861-872.
|
[41] |
Sassetti, C.M., Boyd, D.H., Rubin, E.J., 2001. Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl. Acad. Sci. U. S. A. 98, 12712-12717.
|
[42] |
Shukla, S., Richardson, E.T., Athman, J.J., Shi, L., Wearsch, P.A., McDonald, D., Banaei, N., Boom, W.H., Jackson, M., Harding, C.V., 2014 Mycobacterium tuberculosis lipoprotein LprG binds lipoarabinomannan and determines its cell envelope localization to control phagolysosomal fusion. PLoS Pathog. 10, e1004471.
|
[43] |
Sprott, G.D., Dicaire, C.J., Gurnani, K., Sad, S., Krishnan, L., 2004. Activation of dendritic cells by liposomes prepared from phosphatidylinositol mannosides from Mycobacterium bovis bacillus Calmette-Guerin and adjuvant activity in vivo. Infect. Immun. 72, 5235-5246.
|
[44] |
Srinivasan, L., Gurses, S.A., Hurley, B.E., Miller, J.L., Karakousis, P.C., Briken, V., 2016. Identification of a transcription factor that regulates host cell exit and virulence of Mycobacterium tuberculosis. PLoS Pathog. 12, e1005652.
|
[45] |
Stover, C.K., de la Cruz, V.F., Fuerst, T.R., Burlein, J.E., Benson, L.A., Bennett, L.T., Bansal, G.P., Young, J.F., Lee, M.H., Hatfull, G.F., Snapper, S.B., Barletta, R.G., Jacobs Jr, W.R., Bloom, B.R., 1991. New use of BCG for recombinant vaccines. Nature 351, 456-460.
|
[46] |
Torrelles, J.B., Azad, A.K., Schlesinger, L.S., 2006. Fine discrimination in the recognition of individual species of phosphatidyl-myo-inositol mannosides from Mycobacterium tuberculosis by C-type lectin pattern recognition receptors. J. Immunol. 177, 1805-1816.
|
[47] |
Toyonaga, K., Torigoe, S., Motomura, Y., Kamichi, T., Hayashi, J.M., Morita, Y.S., Noguchi, N., Chuma, Y., Kiyohara, H., Matsuo, K., Tanaka, H., Nakagawa, Y., Sakuma, T., Ohmuraya, M., Yamamoto, T., Umemura, M., Matsuzaki, G., Yoshikai, Y., Yano, I., Miyamoto, T., Yamasaki, S., 2016. C-type lectin receptor DCAR recognizes mycobacterial phosphatidyl-inositol mannosides to promote a Th1 response during infection. Immunity 45, 1245-1257.
|
[48] |
Vir, P., Gupta, D., Agarwal, R., Verma, I., 2014. Immunomodulation of alveolar epithelial cells by Mycobacterium tuberculosis phosphatidylinositol mannosides results in apoptosis. APMIS. 122, 268-282.
|
[49] |
Walters, S.B., Dubnau, E., Kolesnikova, I., Laval, F., Daffe, M., Smith, I., 2006. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol. Microbiol. 60, 312-330.
|
[50] |
Wang, J., Li, B.X., Ge, P.P., Li, J., Wang, Q., Gao, G.F., Qiu, X.B., Liu, C.H., 2015. Mycobacterium tuberculosis suppresses innate immunity by coopting the host ubiquitin system. Nat. Immunol. 16, 237-245.
|
[51] |
Wang, Y., Huang, Y., Xue, C., He, Y., He, Z.G., 2011. ClpR protein-like regulator specifically recognizes RecA protein-independent promoter motif and broadly regulates expression of DNA damage-inducible genes in mycobacteria. J. Biol. Chem. 286, 31159-31167.
|
[52] |
World Health Organization (WHO), 2018. Global Tuberculosis Report 2018. World Health Organization, Geneva.
|
[53] |
Wright, C.C., Hsu, F.F., Arnett, E., Dunaj, J.L., Davidson, P.M., Pacheco, S.A., Harriff, M.J., Lewinsohn, D.M., Schlesinger, L.S., Purdy, G.E., 2017. The Mycobacterium tuberculosis MmpL11 cell wall lipid transporter is important for biofilm formation, intracellular growth, and nonreplicating persistence. Infect. Immun. 85, e00131-17.
|
[54] |
Zhang, L., Li, W., He, Z.G., 2013. DarR, a TetR-like transcriptional factor, is a cyclic di-AMP-responsive repressor in Mycobacterium smegmatis. J. Biol. Chem. 288, 3085-3096.
|