5.9
CiteScore
5.9
Impact Factor
Volume 47 Issue 2
Feb.  2020
Turn off MathJax
Article Contents

Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression

doi: 10.1016/j.jgg.2019.11.009
More Information
  • Mass spectrometry (MS)-based omics technologies are now widely used to profile small molecules in multiple matrices to confer comprehensive snapshots of cellular metabolic phenotypes. The metabolomes of cells, tissues, and organisms comprise a variety of molecules including lipids, amino acids, sugars, organic acids, and so on. Metabolomics mainly focus on the hydrophilic classes, while lipidomics has emerged as an independent omics owing to the complexities of the organismal lipidomes. The potential roles of lipids and small metabolites in disease pathogenesis have been widely investigated in various human diseases, but system-level understanding is largely lacking, which could be partly attributed to the insufficiency in terms of metabolite coverage and quantitation accuracy in current analytical technologies. While scientists are continuously striving to develop high-coverage omics approaches, integration of metabolomics and lipidomics is becoming an emerging approach to mechanistic investigation. Integration of metabolome and lipidome offers a complete atlas of the metabolic landscape, enabling comprehensive network analysis to identify critical metabolic drivers in disease pathology, facilitating the study of interconnection between lipids and other metabolites in disease progression. In this review, we summarize omics-based findings on the roles of lipids and metabolites in the pathogenesis of selected major diseases threatening public health. We also discuss the advantages of integrating lipidomics and metabolomics for in-depth understanding of molecular mechanism in disease pathogenesis.
  • loading
  • [1]
    Abdel-aleem, S., Nadab, M.A., Sayed-Ahmeda, M., Hendricksona, S.C., Louisa, J.S., Walthalla, H.P., Lowea, J.E., 1996. Regulation of fatty acid oxidation by acetyl-CoA generated from glucose utilization in isolated myocytes. Mol. Cell. Cardiol. 28, 825-833.
    [2]
    Abdel-Latif, A., Heron, P.M., Morris, A.J., Smyth, S.S., 2015. Lysophospholipids in coronary artery and chronic ischemic heart disease. Curr. Opin. Lipidol. 26, 432-437.
    [3]
    Acharjee, A., Ament, Z., West, J.A., Stanley, E., Griffin, J.L., 2016. Integration of metabolomics, lipidomics and clinical data using a machine learning method. BMC Bioinf. 17.
    [4]
    Akerele, O.A., Cheema, S.K., 2015. Fatty acyl composition of lysophosphatidylcholine is important in atherosclerosis. Med. Hypotheses 85, 754-760.
    [5]
    Alcalay, R.N., Levy, O.A., Waters, C.C., Fahn, S., Ford, B., Kuo, S.H., Mazzoni, P., Pauciulo, M.W., Nichols, W.C., Gan-Or, Z., Rouleau, G., Chung, W., Wolf, P., Oliva, P., Keutzer, J., Zhang, X., 2015. Glucocerebrosidase activity in Parkinson's disease with and without GBA mutations. Brain 138, 2648-2658.
    [6]
    Au, A., 2018. Metabolomics and lipidomics of ischemic stroke. Adv. Clin. Chem. 85, 31-69.
    [7]
    Au, A., Cheng, K.K., Wei, L.K., 2016. Metabolomics, lipidomics and pharmacometabolomics of human hypertension. Adv. Exp. Med. Biol. 956, 599-613.
    [8]
    Barupal, D.K., Haldiya, P.K., Wohlgemuth, G., Kind, T., Kothari, S.L., Pinkerton, K.E., Fiehn, O., 2012. MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity. BMC Bioinf. 13, 99.
    [9]
    Batch, B.C., Hyland, K., Svetkey, L.P., 2014. Branch chain amino acids: biomarkers of health and disease. Curr. Opin. Clin. Nutr. Metab. Care 17, 86-89.
    [10]
    Belanger, M., Allaman, I., Magistretti, P.J., 2011. Brain energy metabolism: focus on astrocyteneuron metabolic cooperation. Cell Metabol.. 14, 724-738.
    [11]
    Beloribi-Djefaflia, S., Vasseur, S., Guillaumond, F., 2016. Lipid metabolic reprogramming in cancer cells. Oncogenesis 5, e189.
    [12]
    Berthet, C., Castillo, X., Magistretti, P.J., Hirt, L., 2012. New evidence of neuroprotection by lactate after transient focal cerebral ischaemia: extended benefit after intracerebroventricular injection and efficacy of intravenous administration. Cerebrovasc. Dis. 34 329-335.
    [13]
    Boon, J., Hoy, A. J., Stark, R., Brown, R. D., Meex, R. C., Henstridge, D. C., Schenk, S., Meikle, P.J., Horowitz, J.F., Kingwell, B.A., Bruce, C.R., Wattet, M.J., 2013. Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance. Diabetes 62, 401-410.
    [14]
    Broeckling, C.D., Prenni, J.E., 2018. Stacked injections of biphasic extractions for improved metabolomic coverage and sample throughput. Anal. Chem. 90, 1147-1153.
    [15]
    Brosche, T., Platt,D., 1998. The biological significance of plasmalogens in defense against oxidative damage. Exp. Gerontol. 33, 363-369.
    [16]
    Chan, R.B., Perotte, A.J., Zhou, B., Liong, C., Shorr, E.J., Marder, K.S., Kang, U.J., Waters, C.H., Levy, O.A., Xu, Y., Shim, H., Bin, Pe’er, I., Di Paolo, G., Alcalay, R.N., 2017. Elevated GM3 plasma concentration in idiopathic Parkinson’s disease: A lipidomic analysis. PLoS One 12, 1–13.
    [17]
    Chao, H.W., Chao, S.W., Lin, H., Ku, H.C., Cheng, C.F., 2019. Homeostasis of glucose and lipid in non-alcoholic fatty liver disease. Int. J. Mol. Sci. 20, 298.
    [18]
    Chen, Y., Guillemin, G.J., 2009. Kynurenine pathway metabolites in humans: disease and healthy states. Int. J. Tryptophan Res.: IJTR 2, 1-19.
    [19]
    Chen, Y., Ma, Z., Shen, X., Li, L., Zhong, J., Min, L.S., Xu, L., Li, H., Zhang, J., Dai, L., 2018. Serum lipidomics profiling to identify biomarkers for non-small cell lung cancer. BioMed Res. Int. 2018, 5276240.
    [20]
    Cicalini, I., Rossi, C., Pieragostino, D., Agnifili, L., Mastropasqua, L., Di Ioia, M., De Luca, G., Onofrj, M., Federici, L., Del Boccio, P., 2019. Integrated lipidomics and metabolomics analysis of tears in multiple sclerosis: an insight into diagnostic potential of lacrimal fluid. Int. J. Mol. Sci. 20.
    [21]
    Colombini, M., 2017. Ceramide channels and mitochondrial outer membrane permeability. J. Bioenerg. Biomembr. 49, 57-64.
    [22]
    Coman, C., Solari, F.A., Hentschel, A., 2016. Simultaneous metabolite, protein, lipid extraction (SIMPLEX): a combinatorial multimolecular omics approach for systems biology. Mol. Cell. Proteom. 15, 1453-1466.
    [23]
    Curtis, M.A., Penney, E.B., Pearson, A.G., van Roon-Mom, W.M., Butterworth, N.J., Dragunow, M., Connor, B., Faull, R.L., 2003. Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proc. Natl. Acad. Sci. U.S.A. 100, 9023-9027.
    [24]
    Davies, M.J., 1996. Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation 94, 2013-2020.
    [25]
    de Mello, V.D., Lankinen, M., Schwab, U., Kolehmainen, M., Lehto, S., Seppanen-Laakso, T., Oresic, M., Pulkkinen, L., Uusitupa, M., Erkkila, A.T., 2009. Link between plasma ceramides, inflammation and insulin resistance: association with serum IL-6 concentration in patients with coronary heart disease. Diabetologia 52, 2612-2615.
    [26]
    Dettmer, K., Aronov, P.A., Hammock, B.D., 2007. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 26, 51-78.
    [27]
    Di Paolo, G., Kim, T.W., 2011. Linking lipids to Alzheimer's disease: cholesterol and beyond. Nat. Rev. Neurosci. 12, 284-296.
    [28]
    Diaz, M., Fabelo, N., Martin, V., Ferrer, I., Gomez, T., Marin, R., 2015. Biophysical alterations in lipid rafts from human cerebral cortex associate with increased BACE1/AβPP interaction in early stages of Alzheimer's disease. J. Alzheimer's Dis. 43, 1185-1198.
    [29]
    Epand, R.M., Fuller, N., Rand, R. P., 1996. Role of the position of unsaturation on the phase behavior and intrinsic curvature of phosphatidylethanolamines. Biophys. J. 71, 1806-1810.
    [30]
    Erion, D.M., Shulman, G.I., 2010. Diacylglycerol-mediated insulin resistance. Nat. Med. 16, 400-402.
    [31]
    Fabelo, N., Martin, V., Marin, R., Moreno, D., Ferrer, I., Diaz, M., 2014. Altered lipid composition in cortical lipid rafts occurs at early stages of sporadic Alzheimer's disease and facilitates APP/BACE1 interactions. Neurobiol. Aging 35, 1801-1812.
    [32]
    Fahrmann, J., Grapov, D., Yang, J., Hammock, B., Fiehn, O., Bell, G.I., Hara, M., 2015. Systemic alterations in the metabolome of diabetic NOD mice delineate increased oxidative stress accompanied by reduced inflammation and hypertriglyceremia. Am. J. Physiol. Endocrinol. Metab. 308, E978-E989.
    [33]
    Fahy, E., Subramaniam, S., Brown, H.A., Glass, C.K., Merrill, A.H., Jr, Murphy, R.C., Raetz, C.R., Russell, D.W., Seyama, Y., Shaw, W., Shimizu, T., Spener, F., van Meer, G., VanNieuwenhze, M.S., White, S.H., Witztum, J.L., Dennis, E.A., 2005. A comprehensive classification system for lipids. J. Lipid Res. 46, 839-861.
    [34]
    Fahy, E., Cotter, D., Sud, M., 2011. Subramaniam, S. Lipid classification, structures and tools. Biochim. Biophys. Acta 1811, 637-647.
    [35]
    Farrokhi Yekta, R., Rezaie Tavirani, M., Arefi Oskouie, A., Mohajeri-Tehrani, M.R., Soroush, A.R., 2017. The metabolomics and lipidomics window into thyroid cancer research. Biomarkers 22, 595-603.
    [36]
    Fiehn, O., 2002. Metabolomics - the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155-171.
    [37]
    Fiehn, O., Garvey, W.T., Newman, J.W., Lok, K.H., Hoppel, C.L., Adams, S.H., 2010. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS One 5, e15234.
    [38]
    Finkelstein, J.D., 1990. Methionine metabolism in mammals. J. Nutr. Biochem. 1, 228-237.
    [39]
    Floegel, A., Stefan, N., Yu, Z., Muhlenbruch, K., Drogan, D., Joost, H.-G., Fritsche, A., Haring, H.-U., de Angelis, M.H., Peters, A., Roden, M., Prehn, C., Wang-Sattler, R., Illig, T., Schulze, M.B., Jerzy Adamski, J., Boeing, H., Pischonet, T., 2013. Identifcation of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 62, 639-648.
    [40]
    Futerman, A.H., Hannun, Y.A., 2004. The complex life of simple sphingolipids. EMBO Rep.. 5, 777-782.
    [41]
    Gaglio, D., Metallo, C.M., Gameiro, P.A., Hiller, K., Danna, L.S, Balestrieri, C., Alberghina, L., Stephanopoulos, G., Chiaradonna, F., 2011. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol. Syst. Biol. 7, 523.
    [42]
    Gassama-Diagne, A., Yu, W., ter Beest, M., Martin-Belmonte, F., Kierbel, A., Engel, J., Mostov, K., 2006. Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nat. Cell Biol. 8, 963-970.
    [43]
    Gogna, N., Krishna, M., Oommen, A.M., Dorai, K., 2015. Investigating correlations in the altered metabolic profiles of obese and diabetic subjects in a South Indian Asian population using an NMR-based metabolomic approach. Mol. Biosyst. 11, 595-606.
    [44]
    Gonzalez-Dominguez, R., Garcia-Barrera, T., Gomez-Ariza, J.L., 2014. Metabolomic study of lipids in serum for biomarker discovery in Alzheimer's disease using direct infusion mass spectrometry. J. Pharm. Biomed. Anal. 98, 321-326.
    [45]
    Grey, M., Dunning, C.J., Gaspar, R., Grey, C., Brundin, P., Sparr, E., Linse, S., 2015. Acceleration of alpha-synuclein aggregation by exosomes. J. Biol. Chem. 290, 2969-2982.
    [46]
    Guo, S., Wang, Y., Zhou, D., Li, Z., 2014. Significantly increased monounsaturated lipids relative to polyunsaturated lipids in six types of cancer microenvironment are observed by mass spectrometry imaging. Sci. Rep. 4, 5959.
    [47]
    Gupta, S., Natarajan, R., Payne, S.G., Studer, E.J., Spiegel, S., Dent, P., Hylemon, P.B., 2004. Deoxycholic acid activates the c-Jun N-terminal kinase pathway via FAS receptor activation in primary hepatocytes. Role of acidic sphingomyelinase-mediated ceramide generation in FAS receptor activation. J. Biol. Chem. 279, 5821-5828.
    [48]
    Hall, Z., Ament, Z., Wilson, C.H., Burkhart, D.L., Ashmore, T., Koulman, A., Littlewood, T., Evan, G.I., Griffin, J.L., 2016. Myc expression drives aberrant lipid metabolism in lung cancer. Cancer Res.. 76, 4608-4618.
    [49]
    Han, X., Gross, R.W., 2005. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom. Rev. 24, 367-412.
    [50]
    Han, X., Holtzman, D., McKeel, D.W.Jr, 2001. Plasmalogen deficiency in early Alzheimer's disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J. Neurochem. 77, 1168-1180.
    [51]
    Han, X., Rozen, S., Boyle, S.H, Hellegers, C., Cheng, H., Burke, J.R., Welsh-Bohmer, K.A., Doraiswamy, P.M., Kaddurah-Daouk, R., 2011. Metabolomics in early Alzheimer's disease: identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS One 6, e21643.
    [52]
    Havel, R.J., Eder, H.A., Bragdon, J.H., 1955. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Investig. 34, 1345-1353.
    [53]
    Hla, T., Kolesnick, R., 2014. C16:0-ceramide signals insulin resistance. Cell Metabolism 20, 703–705.
    [54]
    Hunter, M., Demarais, N.J., Faull, R.L.M., Grey, A.C., Curtis, M.A., 2018. Subventricular zone lipidomic architecture loss in Huntington's disease. J. Neurochem. 146, 613-630.
    [55]
    Ibanez, C., Simo, C., Martin-Alvarez, P.J., Kivipelto, M., Winblad, B., Cedazo-Minguez, A., Cifuentes, A., 2012. Toward a predictive model of Alzheimer's disease progression using capillary electrophoresis-mass spectrometry metabolomics. Anal. Chem. 84, 8532-8540.
    [56]
    Incardona, J.P., Eaton, S., 2000. Cholesterol in signal transduction. Curr. Opin. Cell Biol. 12, 193-203.
    [57]
    Isabel Cuartero, M., de la Parra, J., Garcia-Culebras, A., Ballesteros, I., Lizasoain, I., Angeles Moro, M., 2016. The kynurenine pathway in the acute and chronic phases of cerebral ischemia. Curr. Pharmaceut. Des. 22, 1060-1073.
    [58]
    Jelenik, T., Roden, M., 2013. Mitochondrial plasticity in obesity and diabetes mellitus. Antioxidants Redox Signal. 19, 258-268.
    [59]
    Kaddurah-Daouk, R., Zhu, H., Sharma, S., Bogdanov, M., Rozen, S.G., Matson, W., Oki, N.O., Motsinger-Reif, A.A., Churchill1, E., Lei, Z., Appleby, D., Kling, M.A., Trojanowski, J.Q., Doraiswamy, P.M., Arnold, S.E., Pharmacometabolomics Research Network, 2013. Alterations in metabolic pathways and networks in Alzheimer's disease. Transl. Psychiatry 3, e244.
    [60]
    Katsoulieris, E., Mabley, J.G., Samai, M., Green, I.C., Chatterjee, P.K., 2009. alpha-Linolenic acid protects renal cells against palmitic acid lipotoxicity via inhibition of endoplasmic reticulum stress. Eur. J. Pharmacol. 623, 107-112.
    [61]
    Kiebish, M.A., Han, X., Cheng, H., Chuang, J.H., Seyfried, T.N., 2008. Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer. J. Lipid Res. 49, 2545-2556.
    [62]
    Kita, Y., Yoshida, K., Tokuoka, S.M., Hamano, F., Yamazaki, M., Sakimura, K., Kano, M., Shimizu, T., 2015. Fever is mediated by conversion of endocannabinoid 2-arachidonoylglycerol to prostaglandin E2. PLoS One 10, e0133663.
    [63]
    Klein, J., 2000. Membrane breakdown in acute and chronic neurodegeneration: focus on choline-containing phospholipids. J. Neural Transm. 107, pp 1027-1063.
    [64]
    Klein, M.S., Shearer, J., 2016. Metabolomics and type 2 diabetes: translating basic research into clinical application. J. Diabetes Res. 2016, 3898502.
    [65]
    Koeberle, A., Shindou, H., Koeberle, S. C., Laufer, S. A., Shimizu, T., Werz, O., 2013. Arachidonoyl-phosphatidylcholine oscillates during the cell cycle and counteracts proliferation by suppressing Akt membrane binding. Proc. Natl. Acad. Sci. U.S.A. 110, 2546-2551.
    [66]
    Kostic, I., Fidalgo-Carvalho, I., Aday, S., Vazao, H., Carvalheiro, T., Graos, M., Duarte, A., Cardoso, C., Goncalves, L., Carvalho, L., Paiva, A., Ferreira, L., 2015. Lysophosphatidic acid enhances survival of human CD34 (+) cells in ischemic conditions. Sci. Rep. 5, 16406.
    [67]
    Koves, T.R., Ussher, J.R., Noland, R.C., Slentz, D., Mosedale, M., Ilkayeva, O., Bain, J., Stevens, R., Dyck, J.R., Newgard, C.B., Lopaschuk, G.D., Muoio, D.M., 2008. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metabol.. 7, 45-56.
    [68]
    Kulkarni, H., Meikle, P.J., Mamtani, M., Weir, J.M., Barlow, C.K., Jowett, J.B., Bellis, C., Dyer, T.D., Johnson, M.P., Rainwater, D.L., Almasy, L., Mahaney, M.C., Comuzzie, A.G., Blangero, J., Curran, J.E., 2013. Plasma lipidomic profile signature of hypertension in Mexican American families: specific role of diacylglycerols. Hypertension 62, 621-626.
    [69]
    La Torre, D., Seppanen-Laakso, T., Larsson, H.E., Hyotylainen, T., Ivarsson, S.A., Lernmark, A., Oresic, M., the DiPiS study group, 2013. Decreased cord-blood phospholipids in young age at onset type 1 diabetes. Diabetes 62, 3951-3956.
    [70]
    Labreuche, J., Touboul, P.J., Amarenco, P., 2009. Plasma triglyceride levels and risk of stroke and carotid atherosclerosis: a systematic review of the epidemiological studies. Atherosclerosis 203, 331-345.
    [71]
    Labreuche, J., Deplanque, D., Touboul, P.J., Bruckert, E., Amarenco, P., 2010. Association between change in plasma triglyceride levels and risk of stroke and carotid atherosclerosis: systematic review and meta-regression analysis. Atherosclerosis 212, 9-15.
    [72]
    Lai, T.W., Shyu, W.C., Wang, Y.T., 2011. Stroke intervention pathways: NMDA receptors and beyond. Trends Mol. Med. 17, 266-275.
    [73]
    Lai, T.W., Zhang, S., Wang, Y.T., 2014. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog. Neurobiol. 115, 157-188.
    [74]
    Lam, S.M., Shui, G., 2013. Lipidomics as a principal tool for advancing biomedical research. J. Genet. Genomics 40, 375-390.
    [75]
    Lam, S.M., Tong, L., Duan, X., Petznick, A., Wenk, M.R., Shui, G., 2014a. Extensive characterization of human tear fluid collected using different techniques unravels the presence of novel lipid amphiphiles. J. Lipid Res. 55, 289-298.
    [76]
    Lam, S.M., Wang, Y., Duan, X., Wenk, M.R., Kalaria, R.N., Chen, C.P., Lai, M.K., Shui, G., 2014b. Brain lipidomes of subcortical ischemic vascular dementia and mixed dementia. Neurobiol. Aging 35, 2369-2381.
    [77]
    Lam, S.M., Chua, G.H., Li, X.J., Su, B., Shui, G., 2016. Biological relevance of fatty acyl heterogeneity to the neural membrane dynamics of rhesus macaques during normative aging. Oncotarget 7, 55970-55989.
    [78]
    Lam, S.M., Tian, H., Shui, G., 2017a. Lipidomics, en route to accurate quantitation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 752-761.
    [79]
    Lam, S.M., Wang, Y., Li, B., Du, J., Shui, G., 2017b. Metabolomics through the lens of precision cardiovascular medicine. J. Genet. Genomics 44, 127-138.
    [80]
    Lam, S.M., Wang, Z., Li, J., Huang, X., Shui, G., 2017c. Sequestration of polyunsaturated fatty acids in membrane phospholipids of Caenorhabditis elegans dauer larva attenuates eicosanoid biosynthesis for prolonged survival. Redox Bio. 12, 967-977.
    [81]
    Lam, S.M., Wang, R., Miao, H., Li, B., Shui, G., 2018. An integrated method for direct interrogation of sphingolipid homeostasis in the heart and brain tissues of mice through postnatal development up to reproductive senescence. Anal. Chim. Acta 1037, 152-158.
    [82]
    Langfelder, P., Horvath, S., 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 9.
    [83]
    Lee, J., Jung, S., Kim, N., Shin, M.J., Ryu, D.H., Hwang, G.S., 2017. Myocardial metabolic alterations in mice with diet-induced atherosclerosis: linking sulfur amino acid and lipid metabolism. Sci. Rep. 7, 13597.
    [84]
    Lentner, C., 1981. Physical chemistry, composition of blood, hematology, somatometric data, in: Lentner, C. (Eds.), Geigy Scientific Tables. Ciba-Geigy, New Jersey, pp. 359.
    [85]
    Li, Y., Soos, T.J., Li, X., Wu, J., Degennaro, M., Sun, X., Littman, D.R., Birnbaum, M.J., Polakiewicz, R.D., 2004. Protein kinase C Theta inhibits insulin signaling by phosphorylating IRS1 at Ser(1101). J. Biol. Chem. 279, 45304-45307.
    [86]
    Li, D., Wei, W., Ran, X., Yu, J., Li, H., Zhao, L., Zeng, H., Cao, Y., Zeng, Z., Wan, Z., 2017a. Lipoprotein-associated phospholipase A2 and risks of coronary heart disease and ischemic stroke in the general population: a systematic review and meta-analysis. Clin. Chim. Acta 471, 38-45.
    [87]
    Li, L., Ren, W., Kong, H., Zhao, C., Zhao, X., Lin, X., Lu, X., Xu, G., 2017b. An alignment algorithm for LC-MS-based metabolomics dataset assisted by MS/MS information. Anal. Chim. Acta 990, 96-102.
    [88]
    Lichtenstein, A.H., Schwab, U.S., 2000. Relationship of dietary fat to glucose metabolism. Atherosclerosis 150, 227-243.
    [89]
    Lien, L.M., Chiou, H.Y., Yeh, H.L., Chiu, S.Y., Jeng, J.S., Lin, H.J., Hu, C.J., Hsieh, F.I., Wei, Y.H., 2017. Significant association between low mitochondrial DNA content in peripheral blood leukocytes and ischemic stroke. J. Am. Heart Assoc. 6, e006157.
    [90]
    Lipton, J.M., Clark, W.G., 1986. Neurotransmitters in temperature control. Annu. Rev. Physiol. 48, 613-623.
    [91]
    Liu, X., Xu, G., 2018. Recent advances in using mass spectrometry for mitochondrial metabolomics and lipidomics - a review. Anal. Chim. Acta 1037, 3-12.
    [92]
    Liu, Y.Q., Montanya, E., Leahy, J., 2001. Increased islet DNA synthesis and glucose-derived lipid and amino acid production in association with beta-cell hyperproliferation in normoglycaemic 60% pancreatectomy rats. Diabetologia 44, 1026-1033.
    [93]
    Liu, C., Zong, W., Zhang, A., Zhang, H., Luan, Y., Sun, H., Cao, H., Wang, X., 2018. Lipidomic characterisation discovery for coronary heart disease diagnosis based on high-throughput ultra-performance liquid chromatography and mass spectrometry. RSC Adv. 8, 647-654.
    [94]
    Lu, J., Lam, S.M., Wan, Q., Shi, L., Huo, Y., Chen, L., Tang, X., Li, B., Wu, X., Peng, K., Li, M., Wang, S., Xu, Y., Xu, M., Bi, Y., Ning, G., Shui, G., Wang, W., 2019. High-coverage targeted lipidomics reveals novel serum lipid predictors and lipid pathway dysregulation antecedent to type 2 diabetes onset in normoglycemic Chinese adults. Diabetes Care dc190100.
    [95]
    Maehama,T., Taylor, G.S., Dixon, J. E., 2001. PTEN and myotubularin: novel phosphoinositide phosphatases. Annu. Rev. Biochem. 70, 247-279.
    [96]
    Mapstone, M., Cheema, A.K., Fiandaca, M.S., Zhong, X., Mhyre, T.R., MacArthur, L.H., Hall, W.J., Fisher, S.G., Peterson, D.R., Haley, J.M., Nazar, M.D., Rich, S.A., Berlau, D.J., Peltz, C.B., Tan, M.T., Kawas, C.H., Federoff, H.J., 2014. Plasma phospholipids identify antecedent memory impairment in older adults. Nat. Med. 20, 415-418.
    [97]
    Marien, E., Meister, M., Muley, T., Fieuws, S., Bordel, S., Derua, R., Spraggins, J., Van de Plas, R., Dehairs, J., Wouters, J., Bagadi, M., Dienemann, H., Thomas, M., Schnabel, P.A., Caprioli, R.M., Waelkens, E., Swinnen, J.V., 2015. Non-small cell lung cancer is characterized by dramatic changes in phospholipid profiles. Int. J. Cancer 137, 1539-1548.
    [98]
    Martin, V., Fabelo, N., Santpere, G., Puig, B., Marin, R., Ferrer, I., Diaz, M., 2010. Lipid alterations in lipid rafts from Alzheimer's disease human brain cortex. J. Alzheimer's Dis. 19, 489-502.
    [99]
    Meikle, P.J., Wong, G., Barlow, C.K., Kingwell, B.A., 2014. Lipidomics: potential role in risk prediction and therapeutic monitoring for diabetes and cardiovascular disease. Pharmacol. Ther. 143, 12-23.
    [100]
    Meng, C., Zeleznik, O.A., Thallinger, G.G., Kuster, B., Gholami, A.M., Culhane, A.C., 2016. Dimension reduction techniques for the integrative analysis of multi-omics data. Briefings Bioinf.. 17, 628-641.
    [101]
    Mergenthaler, P., Lindauer, U., Dienel, G.A., Meisel, A., 2013. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci.. 36, 587-597.
    [102]
    Mollinedo, F., Gajate, C., 2015. Lipid rafts as major platforms for signaling regulation in cancer. Adv. Biol. Regul. 57, 130-146.
    [103]
    Monteiro-Cardoso, V.F., Oliveira, M.M., Melo, T., Domingues, M.R., Moreira, P.I., Ferreiro, E., Peixoto, F., Videira, R.A., 2015. Cardiolipin profile changes are associated to the early synaptic mitochondrial dysfunction in Alzheimer's disease. J. Alzheimer's Dis. 43, 1375-1392.
    [104]
    Moore, S.C., Matthews, C.E., Sampson, J.N., Stolzenberg-Solomon, R.Z., Zheng, W., Cai, Q., Tan, Y.T., Chow, W.H., Ji, B.T., Liu, D.K., Xiao, Q., Boca, S.M., Leitzmann, M.F., Yang, G., Xiang, Y.B., Sinha, R., Shu, X.O., Cross, A.J., 2014. Human metabolic correlates of body mass index. Metabolomics 10, 259-269.
    [105]
    Murfitt, S.A., Zaccone, P., Wang, X., Acharjee, A., Sawyer, Y., Koulman, A., Roberts, L.D., Cooke, A., Griffin, J.L., 2018. Metabolomics and lipidomics study of mouse models of type 1 diabetes highlights divergent metabolism in purine and tryptophan metabolism prior to disease onset. J. Proteome Res. 17, 946-960.
    [106]
    Murphy, K.E., Gysbers, A.M., Abbott, S.K., Tayebi, N., Kim, W.S., Sidransky, E., Cooper, A., Garner, B., Halliday, G.M., 2014. Reduced glucocerebrosidase is associated with increased alpha-synuclein in sporadic Parkinson's disease. Brain 137, 834-848.
    [107]
    Nagata, C., Nakamura, K., Wada, K., Tsuji, M., Tamai, Y., Kawachi, T., 2013. Branched-chain amino acid intake and the risk of diabetes in a Japanese community: the Takayama study. Am. J. Epidemiol. 178, 1226-1232.
    [108]
    Naudi, A., Cabre, R., Jove, M., Ayala, V., Gonzalo, H., Portero-Otin, M., Ferrer, I., Pamplona, R., 2015. Lipidomics of human brain aging and Alzheimer's disease pathology. Int. Rev. Neurobiol. 122, 133-189.
    [109]
    Newgard, C.B., 2012. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metabol.. 15, 606-614.
    [110]
    Newgard,C.B., An, J., Bain, J.R., Muehlbauer, M.J., Stevens, R.D., Lien, L.F., Haqq, A.M., Shah, S.H., Arolotto, M., Slentz, C.A., Rochon, J., Gallup, D., Ilkayeva, O., Wenner, B.R., Yancy, W.E, Eisenson, H., Musante, G., Surwit, R., Millington, D.S., Butler, M.D., Svetkey, L.P., 2009. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contibutes to insulin resistance. Cell Metabol.. 9, 311-326.
    [111]
    Nieman, K.M., Kenny, H.A., Penicka, C.V., Ladanyi, A., Buell-Gutbrod, R., Zillhardt, M.R., Romero, I.L., Carey, M.S., Mills, G.B., Hotamisligil, G.S., Yamada, S.D., Peter, M.E., Gwin, K., Lengyelet, E., 2011. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498-1503.
    [112]
    Nordstrom, A., O'Maille, G., Qin, C., Siuzdak, G., 2006. Nonlinear data alignment for UPLC-MS and HPLC-MS based metabolomics: quantitative analysis of endogenous and exogenous metabolites in human serum. Anal. Chem. 78, 3289-3295.
    [113]
    Obeid, R., Awwad, H.M., Rabagny, Y., Graeber, S., Herrmann, W., Geisel, J., 2016. Plasma trimethylamine N-oxide concentration is associated with choline, phospholipids, and methyl metabolism. Am. J. Clin. Nutr. 103, 703-711.
    [114]
    Oresic, M., Simell, S., Sysi-Aho, M., Nanto-Salonen, K., Seppanen-Laakso, T., Parikka, V., Katajamaa, M., Hekkala, A., Mattila, I., Keskinen, P., Yetukuri, L., Reinikainen, A., Lahde, J., Suortti, T., Hakalax, J., Simell, T., Hyoty, H., Veijola, R., Ilonen, J., Lahesmaa, R., Knip, M., Simell, O., 2008. Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J. Exp. Med. 205, 2975-2984.
    [115]
    Overgaard, A.J., Weir, J.M., De Souza, D.P., Tull, D., Haase, C., Meikle, P.J., Pociot, F., 2016. Lipidomic and metabolomic characterization of a genetically modified mouse model of the early stages of human type 1 diabetes pathogenesis. Metabolomics 12, 13.
    [116]
    Padberg, I., Peter, E., Gonzalez-Maldonado, S., Witt, H., Mueller, M., Weis, T., Bethan, B., Liebenberg, V., Wiemer, J., Katus, H.A., Rein, D., Schatz, P., 2014. A new metabolomic signature in type-2 diabetes mellitus and its pathophysiology. PLoS One 9, e85082.
    [117]
    Paglia, G., Stocchero, M., Cacciatore, S., Lai, S., Angel, P., Alam, M.T., Keller, M., Ralser, M., Astarita, G., 2016. Unbiased metabolomic investigation of Alzheimer's disease brain points to dysregulation of mitochondrial aspartate metabolism. J. Proteome Res. 15, 608-618.
    [118]
    Perry, R.J., Samuel, V.T., Petersen, K.F., Shulman, G.I., 2014. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 510, 84-91.
    [119]
    Pieragostino, D., D'Alessandro, M., di Ioia, M., Rossi, C., Zucchelli, M., Urbani, A., Di Ilio, C., Lugaresi, A., Sacchetta, P., Del Boccio, P., 2015. An integrated metabolomics approach for the research of new cerebrospinal fluid biomarkers of multiple sclerosis. Mol. Biosyst. 11, 1563-1572.
    [120]
    Pinz, I., Robich, M.P., Ryzhov, S., Sawyer, D.B., Vary, C., 2017. A novel lipidomic approach to understand human diabetic heart disease. FASEB J. 31, 883.19.
    [121]
    Proia, R.L., 2004. Gangliosides help stabilize the brain. Nat. Genet. 36, 1147-1148.
    [122]
    Qi, Y., Jiang, C., Cheng, J., Krausz, K.W., Li, T., Ferrell, J.M., Gonzalez, F.J., Chiang, J.Y., 2015. Bile acid signaling in lipid metabolism: metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice. Biochim. Biophys. Acta 1851, 19-29.
    [123]
    Qin, L., Zhang, Z., Guo, M., Zhang, Q., Wang, Q., Lu, Z., Zhao, H., Liu, Y., Fu, S., Wang, M., Gao, X., 2016. Plasma metabolomics combined with lipidomics profiling reveals the potential antipyretic mechanisms of Qingkailing injection in a rat model. Chem. Biol. Interact. 254, 24-33.
    [124]
    Quehenberger, O., Dennis, E.A., 2011. The human plasma lipidome. N. Engl. J. Med. 365, 1812-1823.
    [125]
    Quehenberger, O., Armando, A.M., Brown, A.H., Milne, S.B., Myers, D.S., Merrill, A.H., Bandyopadhyay, S., Jones, K.N, Kelly, S., Shaner, R.L, Sullards, C.M., Wang, E., Murphy, R.C., Barkley, R.M., Leiker, T.J., Raetz, C.R.H., Guan, Z., Laird, G.M., Six, D.A., Russell, D.W., McDonald, J.G., Subramaniam, S., Fahy, E., Dennis, E.A., 2010. Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res. 51, 3299-3305.
    [126]
    Raichur, S., Wang, S.T., Chan, P.W., Li, Y., Ching, J., Chaurasia, B., Dogra, S., Ohman, M.K., Takeda, K., Sugii, S., Pewzner-Jung, Y., Futerman, A.H., Summers, S.A., 2014. CerS2 haploinsufficiency inhibits beta-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metabol.. 20, 687-695.
    [127]
    Rohart, F., Gautier, B., Singh, A., Le Cao, K.A., 2017. mixOmics: an R package for 'omics feature selection and multiple data integration. PLoS Comput. Biol. 13, e1005752.
    [128]
    Rysman, E., Brusselmans, K., Scheys, K., Timmermans, L., Derua, R., Munck, S., Van Veldhoven, P.P., Waltregny, D., Daniels, V.W., Machiels, J., Vanderhoydonc, F., Smans, K., Waelkens, E., Verhoeven, G., Swinnen, J.V., 2010. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res.. 70, 8117-8126.
    [129]
    Sas, K.M., Nair, V., Byun, J., Kayampilly, P., Zhang, H., Saha, J., Brosius, F.C., 3rd, Kretzler, M., Pennathur, S., 2015. Targeted lipidomic and transcriptomic analysis identifies dysregulated renal ceramide metabolism in a mouse model of diabetic kidney disease. J. Proteomics Bioinf. Suppl 14, 002.
    [130]
    Schmelzer, K., Fahy, E., Subramaniam, S., Dennis, E.A., 2007. The lipid maps initiative in lipidomics. Methods Enzymol.. 432, 171-183.
    [131]
    Schwaiger, M., Schoeny, H., El Abiead, Y., Hermann, G., Rampler, E., Koellensperger, G., 2019. Merging metabolomics and lipidomics into one analytical run. Analyst 144, 220-229.
    [132]
    Sekhar, R.V., McKay, S.V., Patel, S.G., Guthikonda, A.P., Reddy, V.T., Balasubramanyam, A., Jahoor, F., 2011. Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care 34, 162-167.
    [133]
    Shah, S.H., Hauser, E.R., Bain, J.R., Muehlbauer, M.J., Haynes, C., Stevens, R.D., Wenner, B.R., Dowdy, Z.E., Granger, C.B., Ginsburg, G.S., Newgard, C.B., Krauset, W.E., 2009. High heritability of metabolomic profiles in families burdened with premature cardiovascular disease. Mol. Syst. Biol. 5, 258.
    [134]
    Shui, G., Lam, S.M., Stebbins, J., Kusunoki, J., Duan, X., Li, B., Cheong, W.F., Soon, D., Kelly, R.P., Wenk, M.R., 2013. Polar lipid derangements in type 2 diabetes mellitus: potential pathological relevance of fatty acyl heterogeneity in sphingolipids. Metabolomics 9, 786-799.
    [135]
    Simpson, B.N., Kim, M., Chuang, Y.F., Beason-Held, L., Kitner-Triolo, M., Kraut, M., Lirette, S.T., Windham, B.G., Griswold, M.E., Legido-Quigley, C., Thambisetty, M., 2016. Blood metabolite markers of cognitive performance and brain function in aging. J. Cereb. Blood Flow Metab. 36, 1212-1223.
    [136]
    Smith, R., Mathis, A.D., Ventura, D., Prince, J.T., 2014. Proteomics, lipidomics, metabolomics: a mass spectrometry tutorial from a computer scientist's point of view. BMC Bioinf. 15.
    [137]
    Soltow,Q.A., Jones,D., Promislow, D.E., 2010. A network perspective on metabolism and aging. Integr. Comp. Biol. 50, 844-854.
    [138]
    Song, W.M., Zhang, B., 2015. Multiscale Embedded Gene Co-expression Network Analysis. PLOS Comput. Biol. 11, 1–35.
    [139]
    Spears, L.D., Razani, B., Funai, K., Feng, C., Song, H.W., Semenkovich, C.F., 2018. Lipogenesis regulates the response of cardiac muscle to ischemic stress through sarcoplasmic reticulum calcium atpase. Artherioscl. Throm. Vas. 37, A539.
    [140]
    Spijkers, L.J., van den Akker, R.F., Janssen, B.J., Debets, J.J., De Mey, J.G., Stroes, E.S., van den Born, B.J., Wijesinghe, D.S., Chalfant, C.E., MacAleese, L., Eijkel, G.B., Heeren, R.M.A., Alewijnse, A.E., Peters, S.L.M., 2011. Hypertension is associated with marked alterations in sphingolipid biology: a potential role for ceramide. PLoS One 6, e21817.
    [141]
    Stahlman, M., Pham, H.T., Adiels, M., Mitchell, T.W., Blanksby, S.J., Fagerberg, B., Ekroos, K., Boren, J., 2012. Clinical dyslipidaemia is associated with changes in the lipid composition and inflammatory properties of apolipoprotein-B-containing lipoproteins from women with type 2 diabetes. Diabetologia 55, pp 1156-1166.
    [142]
    Stamatikos, A.D., Paton, C.M., 2013. Role of stearoyl-CoA desaturase-1 in skeletal muscle function and metabolism. Am. J. Physiol. Endocrinol. Metab. 305, E767-E775.
    [143]
    Staubach, S., Hanisch, F.G., 2011. Lipid rafts: signaling and sorting platforms of cells and their roles in cancer. Expert Rev. Proteomics 8, 263-277.
    [144]
    Stegemann, C., Pechlaner, R., Willeit, P., Langley, S.R., Mangino, M., Mayr, U., Menni, C., Moayyeri, A., Santer, P., Rungger, G., Spector, T.D., Willeit, J., Kiechl, S., Mayr, M., 2014. Lipidomics profiling and risk of cardiovascular disease in the prospective population-based Bruneck study. Circulation 129, 1821-1831.
    [145]
    Sunny, N.E., Parks, E.J., Browning, J.D., Burgess, S.C., 2011. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metabol.. 14, 804-810.
    [146]
    Sysi-Aho, M., Ermolov, A., Gopalacharyulu, P.V., Tripathi, A., Seppanen-Laakso, T., Maukonen, J., Mattila, I., Ruohonen, S.T., Vahatalo, L., Yetukuri, L., Harkonen, T., Lindfors, E., Nikkila, J., Ilonen, J., Simell, O., Saarela, M., Knip, M., Kaski, S., Savontaus, E., Oresic, M., 2011. Metabolic regulation in progression to autoimmune diabetes. PLoS Comput. Biol. 7, e1002257.
    [147]
    Tagami, S., Inokuchi Ji, J., Kabayama, K., Yoshimura, H., Kitamura, F., Uemura, S., Ogawa, C., Ishii, A., Saito, M., Ohtsuka, Y., Sakaue, S., Igarashiet, Y., 2002. Ganglioside GM3 participates in the pathological conditions of insulin resistance. J. Biol. Chem. 277, 3085-3092.
    [148]
    Taltavull, N., Ras, R., Marine, S., Romeu, M., Giralt, M., Mendez, L., Medina, I., Ramos-Romero, S., Torres, J.L., Nogues, M.R., 2016. Protective effects of fish oil on pre-diabetes: a lipidomic analysis of liver ceramides in rats. Food Funct. 7, 3981-3988.
    [149]
    Tian, H., Lam, S.M., Shui, G., 2016. Metabolomics, a powerful tool for agricultural research. Int. J. Mol. Sci. 17, 1871.
    [150]
    Toledo, J.B., Arnold, M., Kastenmuller, G., Chang, R., Baillie, R.A., Han, X., Thambisetty, M., Tenenbaum, J.D., Suhre, K., Thompson, J.W., John-Williams, L.S., MahmoudianDehkordim, S., Rotroff, D.M., Jack, J.R., Motsinger-Reif, Risacherno, S.L., Blach, C., Lucasp, J.E., Massaro, T., Louie, G., Zhu, H., Dallmann, G., Klavins, K., Koal, T., Kim, S., Nho, K., Shen, L., Casanova, R., Varma, S., Legido-Quigley, C., Moseley, M.A., Zhu, K., Henrion, M.Y.R., van der Lee, S.J., Harm, A.C., Demirkan, A., Hankemeier,T., van Duijn, C.M., Trojanowski, J.Q., Shaw, L.M., Saykin, A.J., Weiner, M.W., Doraiswamy, P.M., Kaddurah-Daouk, R., 2017. Metabolic network failures in Alzheimer's disease: a biochemical road map. Alzheimer's Dementia 13, 965-984.
    [151]
    T Trushina, E., Dutta, T., Persson, X.M., Mielke, M.M., Petersen, R.C., 2013. Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer's disease using metabolomics. PLoS One 8, e63644.
    [152]
    Tsukahara, R., Haniu, H., Matsuda, Y., Tsukahara, T., 2014. Heart-type fatty-acid-binding protein (FABP3) is a lysophosphatidic acid-binding protein in human coronary artery endothelial cells. FEBS Open Bio. 4, 947-951.
    [153]
    Tu, J., Yin, Y., Xu, M., Wang, R., Zhu, Z.-J., 2017. Absolute quantitative lipidomics reveals lipidome-wide alterations in aging brain. Metabolomics 14, 5.
    [154]
    Turpin, S.M., Nicholls, H.T., Willmes, D.M., Mourier, A., Brodesser, S., Wunderlich, C.M., Mauer, J., Xu, E., Hammerschmidt, P., Bronneke, H.S., Trifunovic, A., LoSasso, G., Wunderlich, F.H., Kornfeld, J.-W., Bluher, M., Kronke, M., Bruninget, J.C., 2014. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metabol.. 20, 678-686.
    [155]
    Vreken, P., Valianpour, F., Nijtmans, L.G., Grivell, L.A., Plecko, B., Wanders, R.J., Barth, P.G., 2000. Defective remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome. Biochem. Biophys. Res. Commun. 279, 378-382.
    [156]
    Wallner, S., Schmitz, G., 2011. Plasmalogens the neglected regulatory and scavenging lipid species. Chem. Phys. Lipids 164, 573-589.
    [157]
    Wang, Y., Deng, X., Hewavitharana, T., Soboloff, J., Gill, D.L., 2008. Stim, ORAI and TRPC channels in the control of calcium entry signals in smooth muscle. Clin. Exp. Pharmacol. Physiol. 35, 1127-1133.
    [158]
    Wang, Z., Klipfell, E., Bennett, B.J., Koeth, R., Levison, B.S., Dugar, B., Feldstein, A.E., Britt, E.B., Fu, X., Chung, Y.M., Wu, Y., Schauer, P., Smith, J.D., Allayee, H., Tang, W.H.W., DiDonato, J.A., Lusis, A.J., Hazen, S.L., 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57-63.
    [159]
    Wang, J., Stancakova, A., Soininen, P., Kangas, A. J., Paananen, J., Kuusisto, J., Ala-Korpela, M., Laaksoet, M., 2012. Lipoprotein subclass profiles in individuals with varying degrees of glucose tolerance: a population-based study of 9399 Finnish men. J. Intern. Med. 272, 562-572.
    [160]
    Wang, Q., Liu, D., Song, P., Zou, M.H., 2015. Tryptophan-kynurenine pathway is dysregulated in inflammation, and immune activation. Front. Biosci. 20, 1116-1143.
    [161]
    Wang, D., Kong, J., Wu, J., Wang, X., Lai, M., 2017a. GC-MS-based metabolomics identifies an amino acid signature of acute ischemic stroke. Neurosci. Lett. 642, 7-13.
    [162]
    Wang, S., Zhou, L., Wang, Z., Shi, X., Xu, G., 2017b. Simultaneous metabolomics and lipidomics analysis based on novel heart-cutting two-dimensional liquid chromatography-mass spectrometry. Anal. Chim. Acta 966, 34-40.
    [163]
    Wishart, M.J., Dixon, J.E., 2002. PTEN and myotubularin phosphatases: from 3-phosphoinositide dephosphorylation to disease. Trends Cell Biol.. 12, 579-585.
    [164]
    Wishart, D.S., Knox, C., Guo, A.C., Eisner, R., Young, N., Gautam, B., Hau, D.D., Psychogios, N., Dong, E., Bouatra, S., et al., 2009. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res.. 37, D603-D610.
    [165]
    Wong, P.T., Qu, K., Chimon, G.N., Seah, A.B., Chang, H.M., Wong, M.C., Ng, Y.K., Rumpel, H., Halliwell, B., Chen, C.P., 2006. High plasma cyst (e) ine level may indicate poor clinical outcome in patients with acute stroke: possible involvement of hydrogen sulfide. J. Neuropathol. Exp. Neurol. 65, 109-115.
    [166]
    Wood, P.L., Smith, T., Lane, N., Khan, M.A., Ehrmantraut, G., Goodenowe, D.B., 2011. Oral bioavailability of the ether lipid plasmalogen precursor, PPI-1011, in the rabbit: a new therapeutic strategy for Alzheimer's disease. Lipids Health Dis.. 10, 227.
    [167]
    Wood, P.L., Barnette, B.L., Kaye, J.A., Quinn, J.F., Woltjer, R.L., 2015. Non-targeted lipidomics of CSF and frontal cortex grey and white matter in control, mild cognitive impairment, and Alzheimer's disease subjects. Acta Neuropsychiatr. 27, 270-278.
    [168]
    Xing, C., Arai, K., Lo, E.H., Hommel, M., 2012. Pathophysiologic cascades in ischemic stroke. Int. J. Stroke 7, 378-385.
    [169]
    Yan, H., Parsons, D.W., Jin, G., McLendon, R., Rasheed, B.A., Yuan, W., Kos, I., Batinic-Haberle, I., Jones, S., Riggins, G.J., Friedman, H., Friedman, A., Reardon, D., Herndon, J., Kinzler, K.W., Velculescu, V.E., Vogelstein, B., Bigner, D.D., 2009. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765-773.
    [170]
    Yang, L., Li, M., Shan, Y., Shen, S., Bai, Y., Liu, H., 2016. Recent advances in lipidomics for disease research. J. Sep. Sci. 39, 38-50.
    [171]
    Yang, L., Lv, P., Ai, W., Li, L., Shen, S., Nie, H., Shan, Y., Bai, Y., Huang, Y., Liu, H., 2017. Lipidomic analysis of plasma in patients with lacunar infarction using normal-phase/reversed-phase two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal. Bioanal. Chem. 409, 3211-3222.
    [172]
    Ying, H., Kimmelman, A.C., Lyssiotis, C.A., Hua, S., Chu, G.C., Fletcher-Sananikone, E., Locasale, J.W., Son, J., Zhang, H., Coloff, J.L., Yan, H., Wang, W., Chen, S., Viale, A., Zheng, H., Paik, J., Lim, C., Guimaraes, A.R., Martin, E.S., Chang, J., Hezel, A.F., Perry, S.R., Hu, J., Gan, B., Xiao, Y., Asara, J.M., Weissleder, R., Wang, Y.A., Chin, L., Cantley, L.C., DePinho, R.A., 2012. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell Death Differ.. 149, 656-670.
    [173]
    Yu, G.P., Chen, G.Q., Wu, S., Shen, K., Ji, Y., 2011. The expression of PEBP4 protein in lung squamous cell carcinoma. Tumour Biol.. 32, 1257-1263.
    [174]
    Zeng, I.S.L., Lumley, T., 2018. Review of statistical learning methods in integrated omics studies (an integrated information science). Bioinf. Biol. Insights 12, 1-16.
    [175]
    Zha, H., Cai, Y., Yin, Y., Wang, Z., Li, K., Zhu, Z.J., 2018. SWATH to MRM: development of high-coverage targeted metabolomics method ssing SWATH technology for biomarker discovery. Anal. Chem. 90, 4062-4070.
    [176]
    Zhang, A.H., Qiu, S., Xu, H.Y., Sun, H., Wang, X.J., 2014. Metabolomics in diabetes. Clin. Chim. Acta 429, 106-110.
    [177]
    Zhang, H., Shao, X., Zhao, H., Li, X., Wei, J., Yang, C., Cai, Z., 2019. Integration of metabolomics and lipidomics reveals metabolic mechanisms of triclosan-induced toxicity in human hepatocytes. Environ. Sci. Technol. 53, 5406-5415.
    [178]
    Zheng, Y., Yu, B., Alexander, D., Couper, D.J., Boerwinkle, E., 2014. Medium-term variability of the human serum metabolome in the Atherosclerosis Risk in Communities (ARIC) study. Omics 18, 364-373.
    [179]
    Zhou, Z., Shen, X., Chen, X., Tu, J., Xiong, X., Zhu, Z.J., 2018. LipidIMMS Analyzer: integrating multi-dimensional information to support lipid identification in ion mobility - mass spectrometry based lipidomics. Bioinformatics 35, 698-700.
    [180]
    Zhou, L., Wang, Z., Hu, C., Zhang, C., Kovatcheva-Datchary, P., Yu, D., Liu, S., Ren, F., Wang, X., Li, Y., Hou, X., Piao, H., Lu, X., Zhang, Y., Xu, G., 2019. Integrated metabolomics and lipidomics analyses reveal metabolic reprogramming in human glioma with IDH1 mutation. J. Proteome Res. 18, 960-969.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures (6)  / Tables (1)

    Article Metrics

    Article views (197) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return