5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 11
Nov.  2019
Turn off MathJax
Article Contents

Site-directed RNA editing (SDRE): Off-target effects and their countermeasures

doi: 10.1016/j.jgg.2019.11.005
More Information
  • Corresponding author: E-mail address: chitian@shanghaitech.edu.cn (Tian Chi)
  • Received Date: 2019-07-18
  • Accepted Date: 2019-11-04
  • Rev Recd Date: 2019-10-08
  • Available Online: 2019-11-27
  • Publish Date: 2019-11-20
  • Site-directed RNA editing (SDRE) is invaluable to basic research and clinical applications and has emerged as a new frontier in genome editing. The past few years have witnessed a surge of interest in SDRE, with SDRE tools emerging at a breathtaking pace. However, off-target effects of SDRE remain a tough problem, which constitutes a major hurdle to their clinical applications. Here we discuss the diverse strategies for combating off-target editing, drawing lessons from the published studies as well as our ongoing research. Overall, SDRE is still at its infancy, with significant challenges and exciting opportunities ahead.
  • loading
  • [1]
    Abudayyeh, O.O., Gootenberg, J.S., Franklin, B., Koob, J., Kellner, M.J., Ladha, A., Joung, J., Kirchgatterer, P., Cox, D.B.T., and Zhang, F. (2019). A cytosine deaminase for programmable single-base RNA editing. Science 365, 382-386.
    [2]
    Cheng, T.-L., Li, S., Yuan, B., Wang, X., Zhou, W., and Qiu, Z. (2019). Expanding C-T base editing toolkit with diversified cytidine deaminases. Nat. Commun. 10, 1-10.
    [3]
    Cox, D.B.T., Gootenberg, J.S., Abudayyeh, O.O., Franklin, B., Kellner, M.J., Joung, J., and Zhang, F. (2017). RNA editing with CRISPR-Cas13. Science 358, 1019-1027.
    [4]
    El-Brolosy, M.A., and Stainier, D.Y.R. (2017). Genetic compensation: a phenomenon in search of mechanisms. PLoS Genet. 13, e1006780.
    [5]
    Fukuda, M., Umeno, H., Nose, K., Nishitarumizu, A., Noguchi, R., and Nakagawa, H. (2017). Construction of a guide-RNA for site-directed RNA mutagenesis utilising intracellular A-to-I RNA editing. Sci. Rep. 7, 41478.
    [6]
    Gagnidze, K., Rayon-Estrada, V., Harroch, S., Bulloch, K., and Papavasiliou, F.N. (2018). A new chapter in genetic medicine: RNA editing and its role in disease pathogenesis. Trends Mol. Med. 24, 294-303.
    [7]
    Gallo, A., Vukic, D., Michalik, D., O'Connell, M.A., and Keegan, L.P. (2017). ADAR RNA editing in human disease; more to it than meets the I. Hum. Genet. 136, 1265-1278.
    [8]
    Katrekar, D., Chen, G., Meluzzi, D., Ganesh, A., Worlikar, A., Shih, Y.-R., Varghese, S., and Mali, P. (2019). In vivo RNA editing of point mutations via RNA-guided adenosine deaminases. Nat. Methods 16, 239.
    [9]
    Konermann, S., Lotfy, P., Brideau, N.J., Oki, J., Shokhirev, M.N., and Hsu, P.D. (2018). Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665-676.e14.
    [10]
    Kuttan, A., and Bass, B.L. (2012). Mechanistic insights into editing-site specificity of ADARs. Proc. Natl. Acad. Sci. U. S. A 109, E3295-E3304.
    [11]
    Merkle, T., Merz, S., Reautschnig, P., Blaha, A., Li, Q., Vogel, P., Wettengel, J., Li, J.B., and Stafforst, T. (2019). Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat. Biotechnol. 37, 133-138.
    [12]
    Montiel-Gonzalez, M.F., Vallecillo-Viejo, I.C., and Rosenthal, J.J.C. (2016). An efficient system for selectively altering genetic information within mRNAs. Nucleic Acids Res. 44, e157.
    [13]
    Montiel-Gonzalez, M.F., Vallecillo-Viejo, I., Yudowski, G.A., and Rosenthal, J.J.C. (2013). Correction of mutations within the cystic fibrosis transmembrane conductance regulator by site-directed RNA editing. Proc. Natl. Acad. Sci. U. S. A 110, 18285-18290.
    [14]
    Qu, L., Yi, Z., Zhu, S., Wang, C., Cao, Z., Zhou, Z., Yuan, P., Yu, Y., Tian, F., Liu, Z., et al. (2019). Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat. Biotechnol. 37, 1059-1069.
    [15]
    Quinn, J.J., and Chang, H.Y. (2016). Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17, 47-62.
    [16]
    Rauch, S., He, E., Srienc, M., Zhou, H., Zhang, Z., and Dickinson, B.C. (2019). Programmable RNA-guided RNA effector proteins built from human parts. Cell 178, 122-134.e12.
    [17]
    Rees, H.A., and Liu, D.R. (2018). Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770-788.
    [18]
    Rossi, A., Kontarakis, Z., Gerri, C., Nolte, H., Holper, S., Kruger, M., and Stainier, D.Y.R. (2015). Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524, 230-233.
    [19]
    Salter, J.D., Bennett, R.P., and Smith, H.C. (2016). The APOBEC protein family: united by structure, divergent in function. Trends Biochem. Sci. 41, 578.
    [20]
    Sinnamon, J.R., Kim, S.Y., Corson, G.M., Song, Z., Nakai, H., Adelman, J.P., and Mandel, G. (2017). Site-directed RNA repair of endogenous Mecp2 RNA in neurons. Proc. Natl. Acad. Sci. U. S. A 114, E9395-E9402.
    [21]
    Vallecillo-Viejo, I.C., Liscovitch-Brauer, N., Montiel-Gonzalez, M.F., Eisenberg, E., and Rosenthal, J.J.C. (2018). Abundant off-target edits from site-directed RNA editing can be reduced by nuclear localization of the editing enzyme. RNA Biol. 15, 104-114.
    [22]
    Vogel, P., Schneider, M.F., Wettengel, J., and Stafforst, T. (2014). Improving site-directed RNA editing in vitro and in cell culture by chemical modification of the GuideRNA. Angew. Chem. Int. Ed. 53, 6267-6271.
    [23]
    Vogel, P., and Stafforst, T. (2019). Critical review on engineering deaminases for site-directed RNA editing. Curr. Opin. Biotechnol. 55, 74-80.
    [24]
    Vogel, P., Moschref, M., Li, Q., Merkle, T., Selvasaravanan, K.D., Li, J.B., and Stafforst, T. (2018). Efficient and precise editing of endogenous transcripts with SNAP-tagged ADARs. Nat. Methods 15, 535-538.
    [25]
    Wettengel, J., Reautschnig, P., Geisler, S., Kahle, P.J., and Stafforst, T. (2017). Harnessing human ADAR2 for RNA repair - recoding a PINK1 mutation rescues mitophagy. Nucleic Acids Res. 45, 2797-2808.
    [26]
    Woolf, T.M., Chase, J.M., and Stinchcomb, D.T. (1995). Toward the therapeutic editing of mutated RNA sequences. Proc. Natl. Acad. Sci. 92, 8298-8302.
    [27]
    Yeh, W.-H., Chiang, H., Rees, H.A., Edge, A.S.B., and Liu, D.R. (2018). In vivo base editing of post-mitotic sensory cells. Nat. Commun. 9, 2184.
    [28]
    Zhang, C., Konermann, S., Brideau, N.J., Lotfy, P., Wu, X., Novick, S.J., Strutzenberg, T., Griffin, P.R., Hsu, P.D., and Lyumkis, D. (2018). Structural basis for the RNA-guided ribonuclease activity of CRISPR-cas13d. Cell 175, 212-223.e17.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (133) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return