5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 11
Nov.  2019
Turn off MathJax
Article Contents

Engineering guide RNA to reduce the off-target effects of CRISPR

doi: 10.1016/j.jgg.2019.11.003
More Information
  • Corresponding author: E-mail address: haoyin@whu.edu.cn (Hao Yin)
  • Received Date: 2019-08-18
  • Accepted Date: 2019-11-15
  • Rev Recd Date: 2019-11-05
  • Available Online: 2019-11-23
  • Publish Date: 2019-11-20
  • As versatile and robust genome editing tools, clustered regularly interspaced short palindromic repeats (CRISPR) technologies have been broadly used in basic research, biotechnology, and therapeutic development. Off-target mutagenesis by CRISPR systems has been demonstrated, and various methods have been developed to markedly increase their specificity. In this review, we highlight the efforts of producing and modifying guide RNA (gRNA) to minimize off-target activities, including sequence and structure design, tuning expression and chemical modification. The modalities of gRNA engineering can be applied across CRISPR systems. In conjunction with CRISPR protein effectors, the engineered gRNA enables efficient and precise genome editing.
  • loading
  • [1]
    Akcakaya, P., Bobbin, M.L., Guo, J.A., Malagon-Lopez, J., Clement, K., Garcia, S.P., Fellows, M.D., Porritt, M.J., Firth, M.A., Carreras, A., Baccega, T., Seeliger, F., Bjursell, M., Tsai, S.Q., Nguyen, N.T., Nitsch, R., Mayr, L.M., Pinello, L., Bohlooly-Y, M., Aryee, M.J., Maresca, M., Joung, J.K., 2018. In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature 561, 416-419.
    [2]
    Alkan, F., Wenzel, A., Anthon, C., Havgaard, J.H., Gorodkin, J., 2018. CRISPR-Cas9 off-targeting assessment with nucleic acid duplex energy parameters. Genome Biol. 19, 177.
    [3]
    Amrani, N., Gao, X.D., Liu, P., Edraki, A., Mir, A., Ibraheim, R., Gupta, A., Sasaki, K.E., Wu, T., Donohoue, P.D., Settle, A.H., Lied, A.M., McGovern, K., Fuller, C.K., Cameron, P., Fazzio, T.G., Zhu, L.J., Wolfe, S.A., Sontheimer, E.J., 2018. NmeCas9 is an intrinsically high-fidelity genome-editing platform. Genome Biol. 19, 214.
    [4]
    Barrangou, R., 2015. The roles of CRISPR-Cas systems in adaptive immunity and beyond. Curr. Opin. Immunol. 32, 36-41.
    [5]
    Bauer, D.E., Kamran, S.C., Lessard, S., Xu, J., Fujiwara, Y., Lin, C., Shao, Z., Canver, M.C., Smith, E.C., Pinello, L., Sabo, P.J., Vierstra, J., Voit, R.A., Yuan, G.C., Porteus, M.H., Stamatoyannopoulos, J.A., Lettre, G., Orkin, S.H., 2013. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 342, 253-257.
    [6]
    Beckert, B., Masquida, B., 2011. Synthesis of RNA by in vitro transcription. Methods Mol. Biol. 703, 29-41.
    [7]
    Bolukbasi, M.F., Gupta, A., Oikemus, S., Derr, A.G., Garber, M., Brodsky, M.H., Zhu, L.J., Wolfe, S.A., 2015. DNA-binding domain fusions enhance the targeting range and precision of Cas9. Nat. Methods 12, 1150-1156.
    [8]
    Cameron, P., Fuller, C.K., Donohoue, P.D., Jones, B.N., Thompson, M.S., Carter, M.M., Gradia, S., Vidal, B., Garner, E., Slorach, E.M., 2017. Mapping the genomic landscape of CRISPR-Cas9 cleavage. Nat. Methods 14, 600.
    [9]
    Charlesworth, C.T., Deshpande, P.S., Dever, D.P., Camarena, J., Lemgart, V.T., Cromer, M.K., Vakulskas, C.A., Collingwood, M.A., Zhang, L., Bode, N.M., Behlke, M.A., Dejene, B., Cieniewicz, B., Romano, R., Lesch, B.J., Gomez-Ospina, N., Mantri, S., Pavel-Dinu, M., Weinberg, K.I., Porteus, M.H., 2019. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 25, 249-254.
    [10]
    Chen, J.S., Dagdas, Y.S., Kleinstiver, B.P., Welch, M.M., Sousa, A.A., Harrington, L.B., Sternberg, S.H., Joung, J.K., Yildiz, A., Doudna, J.A., 2017. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550, 407-410.
    [11]
    Chen, Y., Liu, X., Zhang, Y., Wang, H., Ying, H., Liu, M., Li, D., Lui, K.O., Ding, Q., 2016. A self-restricted CRISPR system to reduce off-target effects. Mol. Ther. 24, 1508-1510.
    [12]
    Cho, S.W., Kim, S., Kim, Y., Kweon, J., Kim, H.S., Bae, S., Kim, J.S., 2014. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 24, 132-141.
    [13]
    Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., Zhang, F., 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
    [14]
    Cox, D.B., Platt, R.J., Zhang, F., 2015. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121-131.
    [15]
    Cromwell, C.R., Sung, K., Park, J., Krysler, A.R., Jovel, J., Kim, S.K., Hubbard, B.P., 2018. Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease specificity. Nat. Commun. 9, 1448.
    [16]
    Deleavey, G.F., Damha, M.J., 2012. Designing chemically modified oligonucleotides for targeted gene silencing. 19, 937-954.
    [17]
    Finn, J.D., Smith, A.R., Patel, M.C., Shaw, L., Youniss, M.R., van Heteren, J., Dirstine, T., Ciullo, C., Lescarbeau, R., Seitzer, J., Shah, R.R., Shah, A., Ling, D., Growe, J., Pink, M., Rohde, E., Wood, K.M., Salomon, W.E., Harrington, W.F., Dombrowski, C., Strapps, W.R., Chang, Y., Morrissey, D.V., 2018. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 22, 2227-2235.
    [18]
    Fonfara, I., Richter, H., Bratovic, M., Le Rhun, A., Charpentier, E., 2016. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532, 517-521.
    [19]
    Fu, Y., Foden, J.A., Khayter, C., Maeder, M.L., Reyon, D., Joung, J.K., Sander, J.D., 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822-826.
    [20]
    Fu, Y., Sander, J.D., Reyon, D., Cascio, V.M., Joung, J.K., 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279.
    [21]
    Gaj, T., Staahl, B.T., Rodrigues, G.A.M.C., Limsirichai, P., Ekman, F.K., Doudna, J.A., Schaffer, D.V., 2017. Targeted gene knock-in by homology-directed genome editing using Cas9 ribonucleoprotein and AAV donor delivery. Nucleic Acids Res. 45, e98.
    [22]
    Gao, Y., Zhao, Y., 2014. Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J. Integr. Plant. Biol. 56, 343-349.
    [23]
    Guilinger, J.P., Thompson, D.B., Liu, D.R., 2014. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32, 577-582.
    [24]
    Haapaniemi, E., Botla, S., Persson, J., Schmierer, B., Taipale, J., 2018. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927-930.
    [25]
    He, Y., Zhang, T., Yang, N., Xu, M., Yan, L., Wang, L., Wang, R., Zhao, Y., 2017. Self-cleaving ribozymes enable the production of guide RNAs from unlimited choices of promoters for CRISPR/Cas9 mediated genome editing. 44, 469-472.
    [26]
    Hendel, A., Bak, R.O., Clark, J.T., Kennedy, A.B., Ryan, D.E., Roy, S., Steinfeld, I., Lunstad, B.D., Kaiser, R.J., Wilkens, A.B., Bacchetta, R., Tsalenko, A., Dellinger, D., Bruhn, L., Porteus, M.H., 2015. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985-989.
    [27]
    Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y., Fine, E.J., Wu, X., Shalem, O., Cradick, T.J., Marraffini, L.A., Bao, G., Zhang, F., 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827-832.
    [28]
    Hu, J., Meyers, R.M., Dong, J., Panchakshari, R.A., Alt, F.W., Frock, R.L., 2016. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing. Nat. Protoc. 11, 853.
    [29]
    Ihry, R.J., Worringer, K.A., Salick, M.R., Frias, E., Ho, D., Theriault, K., Kommineni, S., Chen, J., Sondey, M., Ye, C., Randhawa, R., Kulkarni, T., Yang, Z., McAllister, G., Russ, C., Reece-Hoyes, J., Forrester, W., Hoffman, G.R., Dolmetsch, R., Kaykas, A., 2018. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat. Med. 24, 939-946.
    [30]
    Jiang, F., Doudna, J.A., 2017. CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys. 46, 505-529.
    [31]
    Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E., 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
    [32]
    Kelley, M.L., Strezoska, Z., He, K., Vermeulen, A., Smith, A.v.B., 2016. Versatility of chemically synthesized guide RNAs for CRISPR-Cas9 genome editing. J. Biotechnol. 233, 74-83.
    [33]
    Kim, D., Bae, S., Park, J., Kim, E., Kim, S., Yu, H.R., Hwang, J., Kim, J.-I., Kim, J.-S., 2015. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 12, 237-243.
    [34]
    Kim, D., Kim, J., Hur, J.K., Been, K.W., Yoon, S.-h., Kim, J.-S., 2016. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat. Biotechnol. 34, 863-868.
    [35]
    Kim, H.K., Song, M., Lee, J., Menon, A.V., Jung, S., Kang, Y.M., Choi, J.W., Woo, E., Koh, H.C., Nam, J.W., Kim, H., 2017a. In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat. Methods 14, 153-159.
    [36]
    Kim, S., Bae, T., Hwang, J., Kim, J.-S., 2017b. Rescue of high-specificity Cas9 variants using sgRNAs with matched 5ʹ nucleotides. Genome Biol. 18, 218.
    [37]
    Kim, S., Kim, D., Cho, S.W., Kim, J., Kim, J.S., 2014. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012-1019.
    [38]
    Kim, S., Koo, T., Jee, H.-G., Cho, H.-Y., Lee, G., Lim, D.-G., Shin, H.S., Kim, J.-S., 2018. CRISPR RNAs trigger innate immune responses in human cells. Genome Res. 28, 367-373.
    [39]
    Kleinstiver, B.P., Pattanayak, V., Prew, M.S., Tsai, S.Q., Nguyen, N.T., Zheng, Z., Joung, J.K., 2016. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490-495.
    [40]
    Kocak, D.D., Josephs, E.A., Bhandarkar, V., Adkar, S.S., Kwon, J.B., Gersbach, C.A., 2019. Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat. Biotechnol. 37, 657-666.
    [41]
    Koo, T., Lee, J., Kim, J.-S., 2015. Measuring and reducing off-target activities of programmable nucleases including CRISPR-Cas9. Mol. Cells 38, 475-481.
    [42]
    Kosicki, M., Tomberg, K., Bradley, A., 2018. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765-771.
    [43]
    Lee, R.T.H., Ng, A.S.M., Ingham, P.W., 2016. Ribozyme mediated gRNA generation for in vitro and in vivo CRISPR/Cas9 mutagenesis. PLoS One 11, e0166020.
    [44]
    Liu, J., Gaj, T., Yang, Y.F., Wang, N., Shui, S.L., Kim, S., Kanchiswamy, C.N., Kim, J.S., Barbas, C.F., 2015. Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nat. Protoc. 10, 1842-1859.
    [45]
    Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., Costa, F., Shah, S.A., Saunders, S.J., Barrangou, R., Brouns, S.J.J., Charpentier, E., Haft, D.H., Horvath, P., Moineau, S., Mojica, F.J.M., Terns, R.M., Terns, M.P., White, M.F., Yakunin, A.F., Garrett, R.A., van der Oost, J., Backofen, R., Koonin, E.V., 2015. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13, 722-736.
    [46]
    Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., Church, G.M., 2013. RNA-guided human genome engineering via Cas9. Science 339, 823-826.
    [47]
    Manoharan, M., 1999. 2′-Carbohydrate modifications in antisense oligonucleotide therapy: importance of conformation, configuration and conjugation. Biochim. Biophys. Acta 1489, 117-130.
    [48]
    Moore, R., Spinhirne, A., Lai, M.J., Preisser, S., Li, Y., Kang, T., Bleris, L., 2015. CRISPR-based self-cleaving mechanism for controllable gene delivery in human cells. Nucleic Acids Res. 43, 1297-1303.
    [49]
    Mu, W., Tang, N., Cheng, C., Sun, W., Wei, X., Wang, H., 2019. In vitro transcribed sgRNA causes cell death by inducing interferon release. 10, 461-465.
    [50]
    Nissim, L., Perli, S., Fridkin, A., Perez-Pinera, P., Lu, T., 2014. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol. Cell 54, 698-710.
    [51]
    Pickar-Oliver, A., Gersbach, C.A., 2019. The next generation of CRISPR-Cas technologies and applications. Nat. Rev. Mol. Cell. Biol. 20, 490-507.
    [52]
    Ran, F.A., Hsu, P.D., Lin, C.-Y., Gootenberg, J.S., Konermann, S., Trevino, A.E., Scott, D.A., Inoue, A., Matoba, S., Zhang, Y., 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389.
    [53]
    Ranganathan, V., Wahlin, K., Maruotti, J., Zack, D.J., 2014. Expansion of the CRISPR-Cas9 genome targeting space through the use of H1 promoter-expressed guide RNAs. Nat. Commun. 5, 4516.
    [54]
    Rees, H.A., Liu, D.R., 2018. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770-788.
    [55]
    Rueda, F.O., Bista, M., Newton, M.D., Goeppert, A.U., Cuomo, M.E., Gordon, E., Kroner, F., Read, J.A., Wrigley, J.D., Rueda, D., Taylor, B.J.M., 2017. Mapping the sugar dependency for rational generation of a DNA-RNA hybrid-guided Cas9 endonuclease. Nat. Commun. 8, 1610.
    [56]
    Ryan, D.E., Taussig, D., Steinfeld, I., Phadnis, S.M., Lunstad, B.D., Singh, M., Vuong, X., Okochi, K.D., McCaffrey, R., Olesiak, M., 2017. Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs. Nucleic Acids Res. 46, 792-803.
    [57]
    Schofield, A., O'Reilly, D., Malek-Adamian, E., Habibian, M., Damha, M.J., Weigle, A.T., Ageely, E.A., DeRossett, L.B., Kartje, Z.J., Gagnon, K.T., Barkau, C.L., Rohilla, K.J., 2018. Extensive CRISPR RNA modification reveals chemical compatibility and structure-activity relationships for Cas9 biochemical activity. Nucleic Acids Res. 47, 546-558.
    [58]
    Sekine, M., 2018. Recent Development of Chemical Synthesis of RNA. Springer Singapore, Singapore, pp. 41-65.
    [59]
    Slaymaker, I.M., Gao, L., Zetsche, B., Scott, D.A., Yan, W.X., Zhang, F., 2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84-88.
    [60]
    Tsai, S.Q., Joung, J.K., 2016. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat. Rev. Genet. 17, 300-312.
    [61]
    Tsai, S.Q., Nguyen, N.T., Malagon-Lopez, J., Topkar, V.V., Aryee, M.J., Joung, J.K., 2017. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat. Methods 14, 607-614.
    [62]
    Tsai, S.Q., Zheng, Z., Nguyen, N.T., Liebers, M., Topkar, V.V., Thapar, V., Wyvekens, N., Khayter, C., Iafrate, A.J., Le, L.P., 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187-197.
    [63]
    Vakulskas, C.A., Dever, D.P., Rettig, G.R., Turk, R., Jacobi, A.M., Collingwood, M.A., Bode, N.M., McNeill, M.S., Yan, S., Camarena, J., Lee, C.M., Park, S.H., Wiebking, V., Bak, R.O., Gomez-Ospina, N., Pavel-Dinu, M., Sun, W., Bao, G., Porteus, M.H., Behlke, M.A., 2018. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 24, 1216-1224.
    [64]
    Wagner, D.L., Amini, L., Wendering, D.J., Burkhardt, L.-M., Akyuz, L., Reinke, P., Volk, H.-D., Schmueck-Henneresse, M., 2019. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat. Med. 25,242.
    [65]
    Wang, X.W., Hu, L.F., Hao, J., Liao, L.Q., Chiu, Y.T., Shi, M., Wang, Y., 2019. A microRNA-inducible CRISPR-Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool. Nat. Cell Biol. 21, 522-530.
    [66]
    Wienert, B., Shin, J., Zelin, E., Pestal, K., Corn, J.E., 2018. In vitro-transcribed guide RNAs trigger an innate immune response via the RIG-I pathway. PLoS Biol. 16, e2005840.
    [67]
    Wienert, B., Wyman, S.K., Richardson, C.D., Yeh, C.D., Akcakaya, P., Porritt, M.J., Morlock, M., Vu, J.T., Kazane, K.R., Watry, H.L., Judge, L.M., Conklin, B.R., Maresca, M., Corn, J.E., 2019. Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 364, 286-289.
    [68]
    Xie, C., Chen, Y.L., Wang, D.F., Wang, Y.L., Zhang, T.P., Li, H., Liang, F., Zhao, Y., Zhang, G.Y., 2017. SgRNA expression of CRIPSR-Cas9 system based on miRNA as a versatile tool to manipulate multiple and tissue-specific genome editing. Sci. Rep. 7, 5795.
    [69]
    Xu, L., Wang, J., Liu, Y., Xie, L., Su, B., Mou, D., Wang, L., Liu, T., Wang, X., Zhang, B., Zhao, L., Hu, L., Ning, H., Zhang, Y., Deng, K., Liu, L., Lu, X., Zhang, T., Xu, J., Li, C., Wu, H., Deng, H., Chen, H., 2019. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N. Engl. J. Med. 381, 1240-1247.
    [70]
    Yan, W.X., Mirzazadeh, R., Garnerone, S., Scott, D., Schneider, M.W., Kallas, T., Custodio, J., Wernersson, E., Li, Y., Gao, L., 2017. BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks. Nat. Commun. 8, 15058.
    [71]
    Yin, H., Kauffman, K.J., Anderson, D.G., 2017a. Delivery technologies for genome editing. Nat. Rev. Drug Discov. 16, 387-399.
    [72]
    Yin, H., Song, C.Q., Dorkin, J.R., Zhu, L.J., Li, Y., Wu, Q., Park, A., Yang, J., Suresh, S., Bizhanova, A., Gupta, A., Bolukbasi, M.F., Walsh, S., Bogorad, R.L., Gao, G., Weng, Z., Dong, Y., Koteliansky, V., Wolfe, S.A., Langer, R., Xue, W., Anderson, D.G., 2016. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 34, 328-333.
    [73]
    Yin, H., Song, C.Q., Suresh, S., Kwan, S.Y., Wu, Q., Walsh, S., Ding, J., Bogorad, R.L., Zhu, L.J., Wolfe, S.A., Koteliansky, V., Xue, W., Langer, R., Anderson, D.G., 2018. Partial DNA-guided Cas9 enables genome editing with reduced off-target activity. Nat. Chem. Biol. 14, 311-316.
    [74]
    Yin, H., Song, C.Q., Suresh, S., Wu, Q.Q., Walsh, S., Rhym, L.H., Mintzer, E., Bolukbasi, M.F., Zhu, L.J., Kauffman, K., Mou, H.W., Oberholzer, A., Ding, J.M., Kwan, S.Y., Bogorad, R.L., Zatsepin, T., Koteliansky, V., Wolfe, S.A., Xue, W., Langer, R., Anderson, D.G., 2017. Structure-guided chemical modification of guide RNA enables potent non-viral Cas9-mediated genome editing in vivo. Nat. Biotechnol. 35, 1179-1187.
    [75]
    Yin, H., Xue, W., Anderson, D.G., 2019. CRISPR-Cas: a tool for cancer research and therapeutics. Nat. Rev. Clin. Oncol. 16, 281-295.
    [76]
    Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., Koonin, E.V., Zhang, F., 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (110) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return