5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 10
Oct.  2019
Turn off MathJax
Article Contents

Acquisition of functional neurons by direct conversion: Switching the developmental clock directly

doi: 10.1016/j.jgg.2019.10.003
More Information
  • Corresponding author: E-mail address: jwjiao@ioz.ac.cn (Jianwei Jiao)
  • Received Date: 2019-08-16
  • Accepted Date: 2019-10-08
  • Rev Recd Date: 2019-09-20
  • Available Online: 2019-10-28
  • Publish Date: 2019-10-20
  • Identifying approaches for treating neurodegeneration is a thorny task but is important for a growing number of patients. Researchers have focused on discovering the underlying molecular mechanisms of reprogramming and optimizing the technologies for acquiring neurons. Direct conversion is one of the most important processes for treating neurological disorders. Induced neurons derived from direct conversion, which bypass the pluripotency stage, are more effective, more quickly obtained, and are safer than those produced via induced pluripotent stem cells (iPSCs). Based on iPSC strategies, scientists have derived methods to obtain functional neurons by direct conversion, such as neuron-related transcriptional factors, small molecules, microRNAs, and epigenetic modifiers. In this review, we discuss the present strategies for direct conversion of somatic cells into functional neurons and the potentials of direct conversion for producing functional neurons and treating neurodegeneration.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Ambasudhan, R., Talantova, M., Coleman, R., Yuan, X., Zhu, S., Lipton, S.A., Ding, S., 2011. Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9, 113-118.
    [2]
    Berninger, B., Costa, M.R., Koch, U., Schroeder, T., Sutor, B., Grothe, B., Gotz, M., 2007. Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J. Neurosci. 27, 8654-8664.
    [3]
    Berry, N., Gursel, D.B., Boockvar, J.A., 2011. Direct conversion of human fibroblasts to functional neurons in one step. Neurosurgery 69, N18.
    [4]
    Blanchard, J.W., Eade, K.T., Szucs, A., Lo Sardo, V., Tsunemoto, R.K., Williams, D., Sanna, P.P., Baldwin, K.K., 2015. Selective conversion of fibroblasts into peripheral sensory neurons. Nat. Neurosci. 18, 25-35.
    [5]
    Caiazzo, M., Dell'Anno, M.T., Dvoretskova, E., Lazarevic, D., Taverna, S., Leo, D., Sotnikova, T.D., Menegon, A., Roncaglia, P., Colciago, G., Russo, G., Carninci, P., Pezzoli, G., Gainetdinov, R.R., Gustincich, S., Dityatev, A., Broccoli, V., 2011. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476, 224-227.
    [6]
    Cassady, J.P., D'Alessio, A.C., Sarkar, S., Dani, V.S., Fan, Z.P., Ganz, K., Roessler, R., Sur, M., Young, R.A., Jaenisch, R., 2014. Direct lineage conversion of adult mouse liver cells and B lymphocytes to neural stem cells. Stem Cell Rep. 3, 948-956.
    [7]
    Chanda, S., Ang, C.E., Davila, J., Pak, C., Mall, M., Lee, Q.Y., Ahlenius, H., Jung, S.W., Sudhof, T.C., Wernig, M., 2014. Generation of induced neuronal cells by the single reprogramming factor ASCL1. Stem Cell Rep. 3, 282-296.
    [8]
    Chen, Y.-C., Ma, N.-X., Pei, Z.-F., Wu, Z., Do-Monte, F.H., Keefe, S., Yellin, E., Chen, M.S., Yin, J.-C., Lee, G., Toribio, A.M., Hu, Y., Bai, Y.-T., Lee, K., Quirk, G.J., Chen, G., 2019. A NeuroD1 AAV-based gene therapy for functional brain repair after ischemic injury through in vivo astrocyte-to-neuron conversion. Mol. Ther. doi.org/10.1016/j.ymthe.2019.09.003.
    [9]
    Dai, P., Harada, Y., Takamatsu, T., 2015. Highly efficient direct conversion of human fibroblasts to neuronal cells by chemical compounds. J. Clin. Biochem. Nutr. 56, 166-170.
    [10]
    Davis, R.L., Weintraub, H., Lassar, A.B., 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987-1000.
    [11]
    Ebrahimi, B., 2016. Engineering cell fate: Spotlight on cell-activation and signaling-directed lineage conversion. Tissue Cell 48, 475-487.
    [12]
    Gao, Y., Chen, J., Li, K., Wu, T., Huang, B., Liu, W., Kou, X., Zhang, Y., Huang, H., Jiang, Y., Yao, C., Liu, X., Lu, Z., Xu, Z., Kang, L., Chen, J., Wang, H., Cai, T., Gao, S., 2013. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 12, 453-469.
    [13]
    Graf, T., 2011. Historical origins of transdifferentiation and reprogramming. Cell Stem Cell 9, 504-516.
    [14]
    Gu, T.P., Guo, F., Yang, H., Wu, H.P., Xu, G.F., Liu, W., Xie, Z.G., Shi, L., He, X., Jin, S.G., Iqbal, K., Shi, Y.G., Deng, Z., Szabo, P.E., Pfeifer, G.P., Li, J., Xu, G.L., 2011. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477, 606-610.
    [15]
    Guo, Z., Zhang, L., Wu, Z., Chen, Y., Wang, F., Chen, G., 2014. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer's disease model. Cell Stem Cell 14, 188-202.
    [16]
    Gurdon JB, E.T., Fischberg M., 1958. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Natue 182, 2.
    [17]
    Haag, S.M., Gulen, M.F., Reymond, L., Gibelin, A., Abrami, L., Decout, A., Heymann, M., van der Goot, F.G., Turcatti, G., Behrendt, R., Ablasser, A., 2018. Targeting STING with covalent small-molecule inhibitors. Nature 559, 269-273.
    [18]
    Heinrich, C., Blum, R., Gascon, S., Masserdotti, G., Tripathi, P., Sanchez, R., Tiedt, S., Schroeder, T., Gotz, M., Berninger, B., 2010. Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol. 8, e1000373.
    [19]
    Herdy, J., Schafer, S., Kim, Y., Ansari, Z., Zangwill, D., Ku, M., Paquola, A., Lee, H., Mertens, J., Gage, F.H., 2019. Chemical modulation of transcriptionally enriched signaling pathways to optimize the conversion of fibroblasts into neurons. eLife 8, e41356.
    [20]
    Hu, W., Qiu, B., Guan, W., Wang, Q., Wang, M., Li, W., Gao, L., Shen, L., Huang, Y., Xie, G., Zhao, H., Jin, Y., Tang, B., Yu, Y., Zhao, J., Pei, G., 2015. Direct conversion of normal and Alzheimer's disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell 17, 204-212.
    [21]
    Ieda, M., Fu, J.D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B.G., Srivastava, D., 2010. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375-386.
    [22]
    Jaenisch, R., Young, R., 2008. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567-582.
    [23]
    Jayawardena, T.M., Egemnazarov, B., Finch, E.A., Zhang, L., Payne, J.A., Pandya, K., Zhang, Z., Rosenberg, P., Mirotsou, M., Dzau, V.J., 2012. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ. Res. 110, 1465-1473.
    [24]
    Kaminski, M.M., Tosic, J., Kresbach, C., Engel, H., Klockenbusch, J., Muller, A.L., Pichler, R., Grahammer, F., Kretz, O., Huber, T.B., Walz, G., Arnold, S.J., Lienkamp, S.S., 2016. Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors. Nat. Cell Biol. 18, 1269-1280.
    [25]
    Kim, H.S., Kim, J., Jo, Y., Jeon, D., Cho, Y.S., 2014a. Direct lineage reprogramming of mouse fibroblasts to functional midbrain dopaminergic neuronal progenitors. Stem Cell Res. 12, 60-68.
    [26]
    Kim, J., Efe, J.A., Zhu, S., Talantova, M., Yuan, X., Wang, S., Lipton, S.A., Zhang, K., Ding, S., 2011a. Direct reprogramming of mouse fibroblasts to neural progenitors. Proc. Natl. Acad. Sci. U. S. A. 108, 7838-7843.
    [27]
    Kim, J., Su, S.C., Wang, H., Cheng, A.W., Cassady, J.P., Lodato, M.A., Lengner, C.J., Chung, C.Y., Dawlaty, M.M., Tsai, L.H., Jaenisch, R., 2011b. Functional integration of dopaminergic neurons directly converted from mouse fibroblasts. Cell Stem Cell 9, 413-419.
    [28]
    Kim, Y.J., Lim, H., Li, Z., Oh, Y., Kovlyagina, I., Choi, I.Y., Dong, X., Lee, G., 2014b. Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor. Cell Stem Cell 15, 497-506.
    [29]
    Ko, M., Huang, Y., Jankowska, A.M., Pape, U.J., Tahiliani, M., Bandukwala, H.S., An, J., Lamperti, E.D., Koh, K.P., Ganetzky, R., Liu, X.S., Aravind, L., Agarwal, S., Maciejewski, J.P., Rao, A., 2010. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468, 839-843.
    [30]
    Kriaucionis, S., Heintz, N., 2009. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929-930.
    [31]
    Kulangara, K., Adler, A.F., Wang, H., Chellappan, M., Hammett, E., Yasuda, R., Leong, K.W., 2014. The effect of substrate topography on direct reprogramming of fibroblasts to induced neurons. Biomaterials 35, 5327-5336.
    [32]
    Ladewig, J., Mertens, J., Kesavan, J., Doerr, J., Poppe, D., Glaue, F., Herms, S., Wernet, P., Kogler, G., Muller, F.J., Koch, P., Brustle, O., 2012. Small molecules enable highly efficient neuronal conversion of human fibroblasts. Nat. Methods 9, 575-578.
    [33]
    Lee, K., Yu, P., Lingampalli, N., Kim, H.J., Tang, R., Murthy, N., 2015. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells. Int. J. Nanomedicine 10, 1841-1854.
    [34]
    Lee, S., Park, C., Han, J.W., Kim, J.Y., Cho, K., Kim, E.J., Kim, S., Lee, S.J., Oh, S.Y., Tanaka, Y., Park, I.H., An, H.J., Shin, C.M., Sharma, S., Yoon, Y.S., 2017. Direct reprogramming of human dermal fibroblasts into endothelial cells using ER71/ETV2. Circ. Res. 120, 848-861.
    [35]
    Lewis, E.B., 1992. The 1991 Albert Lasker Medical Awards. Clusters of master control genes regulate the development of higher organisms. JAMA 267, 1524-1531.
    [36]
    Li, W., Li, K., Wei, W., Ding, S., 2013. Chemical approaches to stem cell biology and therapeutics. Cell Stem Cell 13, 270-283.
    [37]
    Li, X., Liu, D., Ma, Y., Du, X., Jing, J., Wang, L., Xie, B., Sun, D., Sun, S., Jin, X., Zhang, X., Zhao, T., Guan, J., Yi, Z., Lai, W., Zheng, P., Huang, Z., Chang, Y., Chai, Z., Xu, J., Deng, H., 2017. Direct reprogramming of fibroblasts via a chemically induced XEN-like state. Cell Stem Cell 21, 264-273.e7.
    [38]
    Li, X., Zuo, X., Jing, J., Ma, Y., Wang, J., Liu, D., Zhu, J., Du, X., Xiong, L., Du, Y., Xu, J., Xiao, X., Wang, J., Chai, Z., Zhao, Y., Deng, H., 2015. Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell 17, 195-203.
    [39]
    Liu, M.L., Zang, T., Zou, Y., Chang, J.C., Gibson, J.R., Huber, K.M., Zhang, C.L., 2013. Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nat. Commun. 4, 2183.
    [40]
    Liu, X., Li, F., Stubblefield, E.A., Blanchard, B., Richards, T.L., Larson, G.A., He, Y., Huang, Q., Tan, A.C., Zhang, D., Benke, T.A., Sladek, J.R., Zahniser, N.R., Li, C.Y., 2012. Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells. Cell Res. 22, 321-332.
    [41]
    Luo, C., Lee, Q.Y., Wapinski, O., Castanon, R., Nery, J.R., Mall, M., Kareta, M.S., Cullen, S.M., Goodell, M.A., Chang, H.Y., Wernig, M., Ecker, J.R., 2019. Global DNA methylation remodeling during direct reprogramming of fibroblasts to neurons. eLife 8, e40197.
    [42]
    Ma, N.X., Yin, J.C., Chen, G., 2019. Transcriptome analysis of small molecule-mediated astrocyte-to-neuron reprogramming. Front. Cell Dev. Biol. 7, 82.
    [43]
    Matsuda, T., Irie, T., Katsurabayashi, S., Hayashi, Y., Nagai, T., Hamazaki, N., Adefuin, A.M.D., Miura, F., Ito, T., Kimura, H., Shirahige, K., Takeda, T., Iwasaki, K., Imamura, T., Nakashima, K., 2019. Pioneer factor NeuroD1 rearranges transcriptional and epigenetic profiles to execute microglia-neuron conversion. Neuron 101, 472-485.e7.
    [44]
    Mellen, M., Ayata, P., Dewell, S., Kriaucionis, S., Heintz, N., 2012. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151, 1417-1430.
    [45]
    Meng, F., Chen, S., Miao, Q., Zhou, K., Lao, Q., Zhang, X., Guo, W., Jiao, J., 2012. Induction of fibroblasts to neurons through adenoviral gene delivery. Cell Res. 22, 436-440.
    [46]
    Miskinyte, G., Devaraju, K., Gronning Hansen, M., Monni, E., Tornero, D., Woods, N.B., Bengzon, J., Ahlenius, H., Lindvall, O., Kokaia, Z., 2017. Direct conversion of human fibroblasts to functional excitatory cortical neurons integrating into human neural networks. Stem Cell Res. Ther. 8, 207.
    [47]
    Niu, W., Zang, T., Zou, Y., Fang, S., Smith, D.K., Bachoo, R., Zhang, C.L., 2013. In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat. Cell Biol. 15, 1164-1175.
    [48]
    Nizzardo, M., Simone, C., Falcone, M., Riboldi, G., Comi, G.P., Bresolin, N., Corti, S., 2013. Direct reprogramming of adult somatic cells into other lineages: past evidence and future perspectives. Cell Transplant. 22, 921-944.
    [49]
    Pang, Z.P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D.R., Yang, T.Q., Citri, A., Sebastiano, V., Marro, S., Sudhof, T.C., Wernig, M., 2011. Induction of human neuronal cells by defined transcription factors. Nature 476, 220-223.
    [50]
    Pfisterer, U., Ek, F., Lang, S., Soneji, S., Olsson, R., Parmar, M., 2016. Small molecules increase direct neural conversion of human fibroblasts. Sci. Rep. 6, 38290.
    [51]
    Pfisterer, U., Kirkeby, A., Torper, O., Wood, J., Nelander, J., Dufour, A., Bjorklund, A., Lindvall, O., Jakobsson, J., Parmar, M., 2011. Direct conversion of human fibroblasts to dopaminergic neurons. Proc. Natl. Acad. Sci. U. S. A. 108, 10343-10348.
    [52]
    Polo, J.M., Liu, S., Figueroa, M.E., Kulalert, W., Eminli, S., Tan, K.Y., Apostolou, E., Stadtfeld, M., Li, Y., Shioda, T., Natesan, S., Wagers, A.J., Melnick, A., Evans, T., Hochedlinger, K., 2010. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat. Biotechnol. 28, 848-855.
    [53]
    Raposo, A.A., Vasconcelos, F.F., Drechsel, D., Marie, C., Johnston, C., Dolle, D., Bithell, A., Gillotin, S., van den Berg, D.L., Ettwiller, L., Flicek, P., Crawford, G.E., Parras, C.M., Berninger, B., Buckley, N.J., Guillemot, F., Castro, D.S., 2015. Ascl1 coordinately regulates gene expression and the chromatin landscape during neurogenesis. Cell Rep. 10, 1544-1556.
    [54]
    Rivetti di Val Cervo, P., Romanov, R.A., Spigolon, G., Masini, D., Martin-Montanez, E., Toledo, E.M., La Manno, G., Feyder, M., Pifl, C., Ng, Y.H., Sanchez, S.P., Linnarsson, S., Wernig, M., Harkany, T., Fisone, G., Arenas, E., 2017. Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson's disease model. Nat. Biotechnol. 35, 444-452.
    [55]
    Schneider, J.W., Gao, Z., Li, S., Farooqi, M., Tang, T.S., Bezprozvanny, I., Frantz, D.E., Hsieh, J., 2008. Small-molecule activation of neuronal cell fate. Nat. Chem. Biol. 4, 408-410.
    [56]
    Schugar, R.C., Robbins, P.D., Deasy, B.M., 2008. Small molecules in stem cell self-renewal and differentiation. Gene Ther. 15, 126-135.
    [57]
    Sheng, C., Zheng, Q., Wu, J., Xu, Z., Sang, L., Wang, L., Guo, C., Zhu, W., Tong, M., Liu, L., Li, W., Liu, Z.H., Zhao, X.Y., Wang, L., Chen, Z., Zhou, Q., 2012. Generation of dopaminergic neurons directly from mouse fibroblasts and fibroblast-derived neural progenitors. Cell Res. 22, 769-772.
    [58]
    Smith, D.K., Yang, J., Liu, M.L., Zhang, C.L., 2016. Small molecules modulate chromatin accessibility to promote NEUROG2-mediated fibroblast-to-neuron reprogramming. Stem Cell Rep. 7, 955-969.
    [59]
    Smith, Z.D., Meissner, A., 2013. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204-220.
    [60]
    Son, E.Y., Ichida, J.K., Wainger, B.J., Toma, J.S., Rafuse, V.F., Woolf, C.J., Eggan, K., 2011. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9, 205-218.
    [61]
    Szulwach, K.E., Li, X., Li, Y., Song, C.X., Wu, H., Dai, Q., Irier, H., Upadhyay, A.K., Gearing, M., Levey, A.I., Vasanthakumar, A., Godley, L.A., Chang, Q., Cheng, X., He, C., Jin, P., 2011. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat. Neurosci. 14, 1607-1616.
    [62]
    Takahashi, K., Yamanaka, S., 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676.
    [63]
    Tanabe, K., Haag, D., Wernig, M., 2015. Direct somatic lineage conversion. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140368.
    [64]
    Thompson, R., Casali, C., Chan, C., 2019. Forskolin and IBMX induce neural transdifferentiation of MSCs through downregulation of the NRSF. Sci. Rep. 9, 2969.
    [65]
    Tian, C., Li, Y., Huang, Y., Wang, Y., Chen, D., Liu, J., Deng, X., Sun, L., Anderson, K., Qi, X., Li, Y., Mosley, R.L., Chen, X., Huang, J., Zheng, J.C., 2015. Selective generation of dopaminergic precursors from mouse fibroblasts by direct lineage conversion. Sci. Rep. 5, 12622.
    [66]
    Torper, O., Pfisterer, U., Wolf, D.A., Pereira, M., Lau, S., Jakobsson, J., Bjorklund, A., Grealish, S., Parmar, M., 2013. Generation of induced neurons via direct conversion in vivo. Proc. Natl. Acad. Sci. U. S. A. 110, 7038-7043.
    [67]
    Treutlein, B., Lee, Q.Y., Camp, J.G., Mall, M., Koh, W., Shariati, S.A., Sim, S., Neff, N.F., Skotheim, J.M., Wernig, M., Quake, S.R., 2016. Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature 534, 391-395.
    [68]
    Van Pham, P., Vu, N.B., Dao, T.T., Le, H.T., Phi, L.T., Phan, N.K., 2017. Production of endothelial progenitor cells from skin fibroblasts by direct reprogramming for clinical usages. In Vitro Cell. Dev. Biol. Anim. 53, 207-216.
    [69]
    Velasco, I., Salazar, P., Giorgetti, A., Ramos-Mejia, V., Castano, J., Romero-Moya, D., Menendez, P., 2014. Concise review: Generation of neurons from somatic cells of healthy individuals and neurological patients through induced pluripotency or direct conversion. Stem Cells 32, 2811-2817.
    [70]
    Victor, M.B., Richner, M., Hermanstyne, T.O., Ransdell, J.L., Sobieski, C., Deng, P.Y., Klyachko, V.A., Nerbonne, J.M., Yoo, A.S., 2014. Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts. Neuron 84, 311-323.
    [71]
    Vierbuchen, T., Ostermeier, A., Pang, Z.P., Kokubu, Y., Sudhof, T.C., Wernig, M., 2010. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035-1041.
    [72]
    Wainger, B.J., Buttermore, E.D., Oliveira, J.T., Mellin, C., Lee, S., Saber, W.A., Wang, A.J., Ichida, J.K., Chiu, I.M., Barrett, L., Huebner, E.A., Bilgin, C., Tsujimoto, N., Brenneis, C., Kapur, K., Rubin, L.L., Eggan, K., Woolf, C.J., 2015. Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nat. Neurosci. 18, 17-24.
    [73]
    Wang, P., Zhang, H.L., Li, W., Sha, H., Xu, C., Yao, L., Tang, Q., Tang, H., Chen, L., Zhu, J., 2014. Generation of patient-specific induced neuronal cells using a direct reprogramming strategy. Stem Cells Dev. 23, 16-23.
    [74]
    Wapinski, O.L., Vierbuchen, T., Qu, K., Lee, Q.Y., Chanda, S., Fuentes, D.R., Giresi, P.G., Ng, Y.H., Marro, S., Neff, N.F., Drechsel, D., Martynoga, B., Castro, D.S., Webb, A.E., Sudhof, T.C., Brunet, A., Guillemot, F., Chang, H.Y., Wernig, M., 2013. Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 155, 621-635.
    [75]
    Xiao, D., Liu, X., Zhang, M., Zou, M., Deng, Q., Sun, D., Bian, X., Cai, Y., Guo, Y., Liu, S., Li, S., Shiang, E., Zhong, H., Cheng, L., Xu, H., Jin, K., Xiang, M., 2018. Direct reprogramming of fibroblasts into neural stem cells by single non-neural progenitor transcription factor Ptf1a. Nat. Commun. 9, 2865.
    [76]
    Xie, X., Fu, Y., Liu, J., 2017. Chemical reprogramming and transdifferentiation. Curr. Opin. Genet. Dev. 46, 104-113.
    [77]
    Xu, J., Du, Y., Deng, H., 2015. Direct lineage reprogramming: strategies, mechanisms, and applications. Cell Stem Cell 16, 119-134.
    [78]
    Xu, Z., Jiang, H., Zhong, P., Yan, Z., Chen, S., Feng, J., 2016. Direct conversion of human fibroblasts to induced serotonergic neurons. Mol. Psychiatry 21, 62-70.
    [79]
    Xue, Y., Ouyang, K., Huang, J., Zhou, Y., Ouyang, H., Li, H., Wang, G., Wu, Q., Wei, C., Bi, Y., Jiang, L., Cai, Z., Sun, H., Zhang, K., Zhang, Y., Chen, J., Fu, X.D., 2013. Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell 152, 82-96.
    [80]
    Yang, N., Ng, Y., H. Pang, Z. P., Sudhof, T. C., Wernig, M., 2011. Induced neuronal cells: how to make and define a neuron. Cell Stem Cell 9, 517-525.
    [81]
    Yin, J.C., Zhang, L., Ma, N.X., Wang, Y., Lee, G., Hou, X.Y., Lei, Z.F., Zhang, F.Y., Dong, F.P., Wu, G.Y., Chen, G., 2019. Chemical conversion of human fetal astrocytes into neurons through modulation of multiple signaling pathways. Stem Cell Rep. 12, 488-501.
    [82]
    Yoo, A.S., Sun, A.X., Li, L., Shcheglovitov, A., Portmann, T., Li, Y., Lee-Messer, C., Dolmetsch, R.E., Tsien, R.W., Crabtree, G.R., 2011. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476, 228-231.
    [83]
    Yoo, J., Lee, E., Kim, H.Y., Youn, D.H., Jung, J., Kim, H., Chang, Y., Lee, W., Shin, J., Baek, S., Jang, W., Jun, W., Kim, S., Hong, J., Park, H.J., Lengner, C.J., Moh, S.H., Kwon, Y., Kim, J., 2017. Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson's disease therapy. Nat. Nanotechnol. 12, 1006-1014.
    [84]
    Yu, C., Liu, K., Tang, S., Ding, S., 2014. Chemical approaches to cell reprogramming. Curr. Opin. Genet. Dev. 28, 50-56.
    [85]
    Yu, H., Su, Y., Shin, J., Zhong, C., Guo, J.U., Weng, Y.L., Gao, F., Geschwind, D.H., Coppola, G., Ming, G.L., Song, H., 2015. Tet3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair. Nat. Neurosci. 18, 836-843.
    [86]
    Zhang, J., Chen, S., Zhang, D., Shi, Z., Li, H., Zhao, T., Hu, B., Zhou, Q., Jiao, J., 2016. Tet3-mediated DNA demethylation contributes to the direct conversion of fibroblast to functional neuron. Cell Rep. 17, 2326-2339.
    [87]
    Zhang, L., Lei, Z., Guo, Z., Pei, Z., Chen, Y., Zhang, F., Cai, A., Mok, Y.K., Lee, G., Swaminnathan, V., Wang, F., Bai, Y., Chen, G., 2018. Reversing glial scar back to neural tissue through NeuroD1-mediated astrocyte-to-neuron conversion. bioRxiv doi.org/10.1101/261438.
    [88]
    Zhang, L., Yin, J.C., Yeh, H., Ma, N.X., Lee, G., Chen, X.A., Wang, Y., Lin, L., Chen, L., Jin, P., Wu, G.Y., Chen, G., 2015. Small molecules efficiently reprogram human astroglial cells into functional neurons. Cell Stem Cell 17, 735-747.
    [89]
    Zhao, P., Zhu, T., Lu, X., Zhu, J., Li, L., 2015. Neurogenin 2 enhances the generation of patient-specific induced neuronal cells. Brain Res. 1615, 51-60.
    [90]
    Zhu, X., Girardo, D., Govek, E.E., John, K., Mellen, M., Tamayo, P., Mesirov, J.P., Hatten, M.E., 2016. Role of Tet1/3 genes and chromatin remodeling genes in cerebellar circuit formation. Neuron 89, 100-112.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (103) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return