[1] |
Adato, A., Mandel, T., Mintz-Oron, S., Venger, I., Levy, D., Yativ, M., Dominguez, E., Wang, Z.H., De Vos, R.C.H., Jetter, R., Schreiber, L., Heredia, A., Rogachev, I., Aharoni, A., 2009. Fruit-surface flavonoid accumulation in tomato is controlled by a SIMYB12-regulated transcriptional network. PLoS Genet. 5, e1000777.
|
[2] |
Bae, S., Park, J., Kim, J.S., 2014. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473-1475.
|
[3] |
Bai, Y., and Lindhout, P., 2007. Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann. Bot. 100, 1085-1094.
|
[4] |
Ballester, A.R., Molthoff, J., de Vos, R., Hekkert, B.T.L., Orzaez, D., Fernandez-Moreno, J.P., Tripodi, P., Grandillo, S., Martin, C., Heldens, J., Ykema, M., Granell, A., Bovy, A., 2010. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor S1MYB12 leads to pink tomato fruit color. Plant Physiol. 152, 71-84.
|
[5] |
Brooks, C., Nekrasov, V., Lippman, Z.B., Van Eck, J., 2014. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol. 166, 1292-1297.
|
[6] |
Chen, K., Wang, Y., Zhang, R., Zhang, H., Gao, C., 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667-697.
|
[7] |
Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., Zhang, F., 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
|
[8] |
Deng, L., Wang, H., Sun, C.L., Li, Q., Jiang, H.L., Du, M.M., Li, C.B., Li, C.Y., 2018. Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system. J. Genet. Genomics 45, 51-54.
|
[9] |
Feng, Z.Y., Zhang, B.T., Ding, W.N., Liu, X.D., Yang, D.L., Wei, P.L., Cao, F.Q., Zhu, S.H., Zhang, F., Mao, Y.F., Zhu, J.K., 2013. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 23, 1229-1232.
|
[10] |
Fernandez-Moreno, J.P., Tzfadia, O., Forment, J., Presa, S., Rogachev, I., Meir, S., Orzaez, D., Aharoni, A., Granell, A., 2016. Characterization of a new pink-fruited tomato mutant results in the identification of a null allele of the SlMYB12 transcription factor. Plant Physiol. 171, 1821-1836.
|
[11] |
Li, J., Zhang, H., Si, X., Tian, Y., Chen, K., Liu, J., Chen, H., Gao, C., 2017. Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene. J. Genet. Genomics 44, 465-468.
|
[12] |
Li, X., Zhou, W., Ren, Y., Tian, X., Lv, T., Wang, Z., Fang, J., Chu, C., Yang, J., Bu, Q., 2017b. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing. J. Genet. Genomics 44, 175-178.
|
[13] |
Liu, Y., Du, M., Deng, L., Shen, J., Fang, M., Chen, Q., Lu, Y., Wang, Q., Li, C., Zhai, Q., 2019. MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop. Plant Cell 31, 106-127.
|
[14] |
Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., Church, G.M., 2013. RNA-guided human genome engineering via Cas9. Science 339, 823-826.
|
[15] |
The Tomato Genome Consortium, 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635-641.
|
[16] |
Wang, T., Zhang, H.Y., Zhu, H.L., 2019. CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Hortic. Res. 6, 77.
|
[17] |
Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., Qiu, J.L., 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947-951.
|
[18] |
Yin, K., Gao, C., Qiu, J.L., 2017. Progress and prospects in plant genome editing. Native Plants 3, 17107.
|
[19] |
Zhang, J., Zhang, H., Botella, J.R., Zhu, J.K., 2018a. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J. Integr. Plant Biol. 60, 369-375.
|
[20] |
Zhang, S., Jiao, Z., Liu, L., Wang, K., Zhong, D., Li, S., Zhao, T., Xu, X., Cui, X., 2018b. Enhancer-promoter interaction of SELF PRUNING 5G shapes photoperiod adaptation. Plant Physiol. 178,1631-1642.
|
[21] |
Zhu, G.T., Wang, S.C., Huang, Z.J., Zhang, S.B., Liao, Q.G., Zhang, C.Z., Lin, T., Qin, M., Peng, M., Yang, C.K., Cao, X., Han, X., Wang, X.X., van der Knaap, E., Zhang, Z.H., Cui, X., Klee, H., Fernie, A.R., Luo, J., Huang, S.W., 2018. Rewiring of the fruit metabolome in tomato breeding. Cell 172, 249-261.
|