[1] |
Andrejeva, J., Childs, K.S., Young, D.F., Carlos, T.S., Stock, N., Goodbourn, S., and Randall, R.E. 2004. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc Natl Acad Sci U S A 101, 17264-17269.
|
[2] |
Barber, M.R., Aldridge, J.R., Jr., Webster, R.G., and Magor, K.E. 2010. Association of RIG-I with innate immunity of ducks to influenza. Proc Natl Acad Sci U S A 107, 5913-5918.
|
[3] |
Biacchesi, S., LeBerre, M., Lamoureux, A., Louise, Y., Lauret, E., Boudinot, P., and Bremont, M. 2009. Mitochondrial antiviral signaling protein plays a major role in induction of the fish innate immune response against RNA and DNA viruses. J Virol 83, 7815-7827.
|
[4] |
Brodin, P., and Davis, M.M. 2017. Human immune system variation. Nat Rev Immunol 17, 21-29.
|
[5] |
Cheng, Y., Sun, Y., Wang, H., Yan, Y., Ding, C., and Sun, J. 2015. Chicken STING mediates activation of the IFN gene independently of the RIG-I gene. J Immunol 195, 3922-3936.
|
[6] |
Childs, K., Stock, N., Ross, C., Andrejeva, J., Hilton, L., Skinner, M., Randall, R., and Goodbourn, S. 2007. mda-5, but not RIG-I, is a common target for paramyxovirus V proteins. Virology 359, 190-200.
|
[7] |
Daugherty, M.D., and Malik, H.S. 2012. Rules of engagement: molecular insights from host-virus arms races. Ann Rev Genet 46, 677-700.
|
[8] |
Daugherty, M.D., Young, J.M., Kerns, J.A., and Malik, H.S. 2014. Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts. PLoS Genet 10, e1004403.
|
[9] |
Fan, Y., Huang, Z.-Y., Cao, C.-C., Chen, C.-S., Chen, Y.-X., Fan, D.-D., He, J., Hou, H.-L., Hu, L., Hu, X.-T., Jiang, X.-T., Lai, R., Lang, Y.-S., Liang, B., Liao, S.-G., Mu, D., Ma, Y.-Y., Niu, Y.-Y., Sun, X.-Q., Xia, J.-Q., Xiao, J., Xiong, Z.-Q., Xu, L., Yang, L., Zhang, Y., Zhao, W., Zhao, X.-D., Zheng, Y.-T., Zhou, J.-M., Zhu, Y.-B., Zhang, G.-J., Wang, J., and Yao, Y.-G. 2013. Genome of the Chinese tree shrew. Nat Commun 4, 1426.
|
[10] |
Fan, Y., Ye, M.S., Zhang, J.Y., Xu, L., Yu, D.D., Gu, T.L., Yao, Y.L., Chen, J.Q., Lv, L.B., Zheng, P., Wu, D.D., Zhang, G.J., and Yao, Y.G. 2019. Chromosomal level assembly and population sequencing of the Chinese tree shrew genome. Zoo Res doi: 10.24272/j.issn.2095-8137.2019.063.
|
[11] |
Han, Q., Gao, X., Chu, Z., Wang, X., Eisa Addoma Adam, F., Zhang, S., Jia, Y., Qiu, X., Wang, X., and Yang, Z. 2019. Truncated chicken MDA5 enhances the immune response to inactivated NDV vaccine. Vet Immunol Immunopathol 208, 44-52.
|
[12] |
Hayashi, T., Watanabe, C., Suzuki, Y., Tanikawa, T., Uchida, Y., and Saito, T. 2014. Chicken MDA5 senses short double-stranded RNA with implications for antiviral response against avian influenza viruses in chicken. J Innate Immun 6, 58-71.
|
[13] |
Karpala, A.J., Stewart, C., McKay, J., Lowenthal, J.W., and Bean, A.G. 2011. Characterization of chicken Mda5 activity: regulation of IFN-beta in the absence of RIG-I functionality. J Immunol 186, 5397-5405.
|
[14] |
Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A., Kawai, T., Ishii, K.J., Yamaguchi, O., Otsu, K., Tsujimura, T., Koh, C.S., Reis e Sousa, C., Matsuura, Y., Fujita, T., and Akira, S. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101-105.
|
[15] |
Kumar, S., and Hedges, S.B. 1998. A molecular timescale for vertebrate evolution. Nature 392, 917-920.
|
[16] |
Li, R., Guo, K., Liu, C., Wang, J., Tan, D., Han, X., Tang, C., Zhang, Y., and Wang, J. 2016. Strong inflammatory responses and apoptosis in the oviducts of egg-laying hens caused by genotype VIId Newcastle disease virus. BMC Vet Res 12, 255.
|
[17] |
Liniger, M., Summerfield, A., Zimmer, G., McCullough, K.C., and Ruggli, N. 2012. Chicken cells sense influenza A virus infection through MDA5 and CARDIF signaling involving LGP2. J Virol 86, 705-717.
|
[18] |
Liu, B., and Gao, C. 2018. Regulation of MAVS activation through post-translational modifications. Curr Opin Immunol 50, 75-81.
|
[19] |
Motwani, M., Pesiridis, S., and Fitzgerald, K.A. 2019. DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet doi: 10.1038/s41576-019-0151-1.
|
[20] |
Mukherjee, K., Korithoski, B., and Kolaczkowski, B. 2014. Ancient origins of vertebrate-specific innate antiviral immunity. Mol Biol Evol 31, 140-153.
|
[21] |
Munk, C., Willemsen, A., and Bravo, I.G. 2012. An ancient history of gene duplications, fusions and losses in the evolution of APOBEC3 mutators in mammals. BMC Evol Biol 12, 71.
|
[22] |
Pippig, D.A., Hellmuth, J.C., Cui, S., Kirchhofer, A., Lammens, K., Lammens, A., Schmidt, A., Rothenfusser, S., and Hopfner, K.-P. 2009. The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA. Nucleic Acids Res 37, 2014-2025.
|
[23] |
Ronald, P.C., and Beutler, B. 2010. Plant and animal sensors of conserved microbial signatures. Science 330, 1061-1064.
|
[24] |
Saito, T., Hirai, R., Loo, Y.M., Owen, D., Johnson, C.L., Sinha, S.C., Akira, S., Fujita, T., and Gale, M., Jr. 2007. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci U S A 104, 582-587.
|
[25] |
Satoh, T., Kato, H., Kumagai, Y., Yoneyama, M., Sato, S., Matsushita, K., Tsujimura, T., Fujita, T., Akira, S., and Takeuchi, O. 2010. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci U S A 107, 1512-1517.
|
[26] |
Takeuchi, O., and Akira, S. 2010. Pattern Recognition Receptors and Inflammation. Cell 140, 805-820.
|
[27] |
Tan, X., Sun, L., Chen, J., and Chen, Z.J. 2018. Detection of microbial infections through innate immune sensing of nucleic acids. Ann Rev Microbiol 72, 447-478.
|
[28] |
Uchikawa, E., Lethier, M., Malet, H., Brunel, J., Gerlier, D., and Cusack, S. 2016. Structural Analysis of dsRNA Binding to Anti-viral Pattern Recognition Receptors LGP2 and MDA5. Mol Cell 62, 586-602.
|
[29] |
Wu, B., Peisley, A., Richards, C., Yao, H., Zeng, X., Lin, C., Chu, F., Walz, T., Hur, S. 2013. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152, 276-289.
|
[30] |
Xu, L., Yu, D., Fan, Y., Peng, L., Wu, Y., and Yao, Y.G. 2016. Loss of RIG-I leads to a functional replacement with MDA5 in the Chinese tree shrew. Proc Natl Acad Sci U S A 113, 10950-10955.
|
[31] |
Yang, Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24, 1586-1591.
|
[32] |
Yang, Z., Wong, W.S., and Nielsen, R. 2005. Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 22, 1107-1118.
|
[33] |
Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S., and Fujita, T. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5, 730-737.
|