5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 9
Sep.  2019
Turn off MathJax
Article Contents

Identification of transcriptional isoforms associated with survival in cancer patient

doi: 10.1016/j.jgg.2019.08.003
More Information
  • Corresponding author: E-mail address: tangzefang@pku.edu.cn (Zefang Tang); E-mail address: zeminz@yahoo.com (Zemin Zhang)
  • Received Date: 2019-01-14
  • Accepted Date: 2019-08-21
  • Rev Recd Date: 2019-08-04
  • Available Online: 2019-09-25
  • Publish Date: 2019-09-20
  • The Cancer Genome Atlas (TCGA) project produced RNA-Seq data for tens of thousands of cancer and non-cancer samples with clinical survival information, providing an unprecedented opportunity for analyzing prognostic genes and their isoforms. In this study, we performed the first large-scale identification of transcriptional isoforms that are specifically associated with patient prognosis, even without gene-level association. These specific isoforms are defined as Transcripts Associated with Patient Prognosis (TAPPs). Although a group of TAPPs are the principal isoforms of their genes with intact functional protein domains, another group of TAPPs lack important protein domains found in their canonical gene isoforms. This dichotomy in the distribution of protein domains may indicate different patterns of TAPPs association with cancer. TAPPs in protein-coding genes, especially those with altered protein domains, are rich in known cancer driver genes. We further identified multiple types of cancer recurrent TAPPs, such asDCAF17-201, providing a new approach for the detection of cancer-associated events. In order to make the wide research community to study prognostic isoforms, we developed a portal named GESUR (http://gesur.cancer-pku.cn/), which illustrates the detailed prognostic characteristics of TAPPs and other isoforms. Overall, our integrated analysis of gene expression and clinical parameters provides a new perspective for understanding the applications of different gene isoforms in tumor progression.
  • loading
  • [1]
    Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G., 2000. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25-29.
    [2]
    Baker, K.E., Parker, R., 2004. Nonsense-mediated mRNA decay: terminating erroneous gene expression. Curr. Opin. Cell Biol. 16, 293-299.
    [3]
    Barash, Y., Calarco, J.A., Gao, W., Pan, Q., Wang, X., Shai, O., Blencowe, B.J., Frey, B.J., 2010. Deciphering the splicing code. Nature 465, 53.
    [4]
    Black, D.L., 2003. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291-336.
    [5]
    Broglio, K.R., Berry, D.A., 2009. Detecting an overall survival benefit that is derived from progression-free survival. JNCI J. Natl. Cancer Inst. 101, 1642-1649.
    [6]
    Burzykowski, T., Buyse, M., Piccart-Gebhart, M.J., Sledge, G., Carmichael, J., Luck, H.-J., Mackey, J.R., Nabholtz, J.-M., Paridaens, R., Biganzoli, L., Jassem, J., Bontenbal, M., Bonneterre, J., Chan, S., Basaran, G.A., Therasse, P., 2008. Evaluation of tumor response, disease control, progression-free survival, and time to progression as potential surrogate end points in metastatic breast cancer. J. Clin. Oncol. 26, 1987-1992.
    [7]
    Buyse, M., Burzykowski, T., Carroll, K., Michiels, S., Sargent, D.J., Miller, L.L., Elfring, G.L., Pignon, J.-P., Piedbois, P., 2007. Progression-free survival is a surrogate for survival in advanced colorectal cancer. J. Clin. Oncol. 25, 5218-5224.
    [8]
    Buyse, M., Thirion, P., Carlson, R.W., Burzykowski, T., Molenberghs, G., Piedbois, P., 2000. Relation between tumour response to first-line chemotherapy and survival in advanced colorectal cancer: a meta-analysis. The Lancet 356, 373-378.
    [9]
    Chen, P., Yue, X., Xiong, H., Lu, X., Ji, Z., 2019. RBM3 upregulates ARPC2 by binding the 3’UTR and contributes to breast cancer progression. Int. J. Oncol. 54, 1387-1397.
    [10]
    Chien, M.-H., Lee, W.-J., Yang, Y.-C., Li, Y.-L., Chen, B.-R., Cheng, T.-Y., Yang, P.-W., Wang, M.-Y., Jan, Y.-H., Lin, Y.-K., Lee, J.-M., Hsiao, M., Chen, J.-S., Hua, K.-T., 2017. KSRP suppresses cell invasion and metastasis through miR-23a-mediated EGR3 mRNA degradation in non-small cell lung cancer. Biochim. Biophys. Acta Gene Regul. Mech. 1860, 1013-1024.
    [11]
    Di Leo, A., Bleiberg, H., Buyse, M., 2003. Overall survival is not a realistic end point for clinical trials of new drugs in advanced solid tumors: a critical assessment based on recently reported phase III trials in colorectal and breast cancer. J. Clin. Oncol. 21, 2045-2047.
    [12]
    Dong, W., Dai, Z.-H., Liu, F.-C., Guo, X.-G., Ge, C.-M., Ding, J., Liu, H., Yang, F., 2019. The RNA-binding protein RBM3 promotes cell proliferation in hepatocellular carcinoma by regulating circular RNA SCD-circRNA 2 production. EBioMedicine 45, 155-167.
    [13]
    Duhamel, S., Goyette, M.-A., Thibault, M.-P., Filion, D., Gaboury, L., Cote, J.-F., 2018. The E3 Ubiquitin ligase HectD1 suppresses EMT and metastasis by targeting the +TIP ACF7 for degradation. Cell Rep. 22, 1016-1030.
    [14]
    Ellis, J.D., Barrios-Rodiles, M., Colak, R., Irimia, M., Kim, T., Calarco, J.A., Wang, X., Pan, Q., O’Hanlon, D., Kim, P.M., Wrana, J.L., Blencowe, B.J., 2012. Tissue-specific alternative splicing remodels protein-protein interaction networks. Mol. Cell 46, 884-892.
    [15]
    Finn, R.D., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Mistry, J., Mitchell, A.L., Potter, S.C., Punta, M., Qureshi, M., Sangrador-Vegas, A., Salazar, G.A., Tate, J., Bateman, A., 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279-D285.
    [16]
    Flaherty, K.T., Hennig, M., Lee, S.J., Ascierto, P.A., Dummer, R., Eggermont, A.M.M., Hauschild, A., Kefford, R., Kirkwood, J.M., Long, G.V., Lorigan, P., Mackensen, A., McArthur, G., O’Day, S., Patel, P.M., Robert, C., Schadendorf, D., 2014. Surrogate endpoints for overall survival in metastatic melanoma: a meta-analysis of randomised controlled trials. Lancet Oncol. 15, 297-304.
    [17]
    Foulkes, N.S., Sassone-Corsi, P., 1992. More is better: activators and repressors from the same gene. Cell 68, 411-414.
    [18]
    Goldman, M., Craft, B., Brooks, A.N., Zhu, J., Haussler, D., 2018. The UCSC Xena platform for cancer genomics data visualization and interpretation. bioRxiv 326470. https://doi.org/10.1101/326470
    [19]
    Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Diekhans, M., Kokocinski, F., Aken, B.L., Barrell, D., Zadissa, A., Searle, S., Barnes, I., Bignell, A., Boychenko, V., Hunt, T., Kay, M., Mukherjee, G., Rajan, J., Despacio-Reyes, G., Saunders, G., Steward, C., Harte, R., Lin, M., Howald, C., Tanzer, A., Derrien, T., Chrast, J., Walters, N., Balasubramanian, S., Pei, B., Tress, M., Rodriguez, J.M., Ezkurdia, I., Baren, J. van, Brent, M., Haussler, D., Kellis, M., Valencia, A., Reymond, A., Gerstein, M., Guigo, R., Hubbard, T.J., 2012. GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res. 22, 1760-1774.
    [20]
    Huang, H., Wu, Yunhong, Fu, W., Wang, X., Zhou, L., Xu, X., Huang, F., Wu, Yi, 2019. Downregulation of Keap1 contributes to poor prognosis and Axitinib resistance of renal cell carcinoma via upregulation of Nrf2 expression. Int. J. Mol. Med. 43, 2044-2054.
    [21]
    Ives, N.J., Stowe, R.L., Lorigan, P., Wheatley, K., 2007. Chemotherapy compared with biochemotherapy for the treatment of metastatic melanoma: A meta-analysis of 18 trials involving 2,621 Patients. J. Clin. Oncol. 25, 5426-5434.
    [22]
    Korn, E.L., Liu, P.-Y., Lee, S.J., Chapman, J.-A.W., Niedzwiecki, D., Suman, V.J., Moon, J., Sondak, V.K., Atkins, M.B., Eisenhauer, E.A., Parulekar, W., Markovic, S.N., Saxman, S., Kirkwood, J.M., 2008. Meta-analysis of phase II cooperative group trials in metastatic stage IV melanoma to determine progression-free and overall survival benchmarks for future phase II trials. J. Clin. Oncol. 26, 527-534.
    [23]
    Lewis, B.P., Green, R.E., Brenner, S.E., 2003. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc. Natl. Acad. Sci. 100, 189-192.
    [24]
    Li, H.-D., Menon, R., Omenn, G.S., Guan, Y., 2014. The emerging era of genomic data integration for analyzing splice isoform function. Trends Genet. 30, 340-347.
    [25]
    Light, S., Elofsson, A., 2013. The impact of splicing on protein domain architecture. Curr. Opin. Struct. Biol., New contructs and expressions of proteins / Sequences and topology 23, 451-458.
    [26]
    Pinto, A., El Ali, Z., Moniot, S., Tamborini, L., Steegborn, C., Foresti, R., De Micheli, C., 2018. Effects of 3-Bromo-4,5-dihydroisoxazole derivatives on Nrf2 activation and heme oxygenase-1 expression. ChemistryOpen 7, 858-864.
    [27]
    Revil, T., Toutant, J., Shkreta, L., Garneau, D., Cloutier, P., Chabot, B., 2007. Protein kinase C-Dependent control of Bcl-x alternative splicing. Mol. Cell. Biol. 27, 8431-8441.
    [28]
    Rheinbay, E., Nielsen, M.M., Abascal, F., Tiao, G., Hornshoej, H., Hess, J.M., Pedersen, R.I.I., Feuerbach, L., Sabarinathan, R., Madsen, H.T., Kim, J., Mularoni, L., Shuai, S., Camaioni, A.A.L., Herrmann, C., Maruvka, Y.E., Shen, C., Amin, S.B., Bertl, J., Dhingra, P., Diamanti, K., Gonzalez-Perez, A., Guo, Q., Haradhvala, N.J., Isaev, K., Juul, M., Komorowski, J., Kumar, S., Lee, D., Lochovsky, L., Liu, E.M.M., Pich, O., Tamborero, D., Umer, H.M., Uuskula-Reimand, L., Wadelius, C., Wadi, L., Zhang, J., Boroevich, K.A., Carlevaro-Fita, J., Chakravarty, D., Chan, C.W.Y.Y., Fonseca, N.A., Hamilton, M.P., Hong, C., Kahles, A., Kim, Y., Lehmann, K.-V., Johnson, T.A.A., Kahraman, A., Park, K., Saksena, G., Sieverling, L., Sinnott-Armstrong, N.A., Campbell, P.J., Hobolth, A., Kellis, M., Lawrence, M.S., Raphael, B., Rubin, M.A., Sander, C., Stein, L., Stuart, J., Tsunoda, T., Wheeler, D.A., Johnson, R., Reimand, J., Gerstein, M.B., Khurana, E., Lopez-Bigas, N., Martincorena, I., Pedersen, J.S.S., Getz, G., Group, P.D. and F.I., Net, I.P.-C.A. of W.G., 2017. Discovery and characterization of coding and non-coding driver mutations in more than 2,500 whole cancer genomes. bioRxiv 237313. https://doi.org/10.1101/237313
    [29]
    Sanford, J.R., Gray, N.K., Beckmann, K., Caceres, J.F., 2004. A novel role for shuttling SR proteins in mRNA translation. Genes Dev. 18, 755-768.
    [30]
    Shen, S., Wang, Y., Wang, C., Wu, Y.N., Xing, Y., 2016. SURVIV for survival analysis of mRNA isoform variation. Nat. Commun. 7, 11548.
    [31]
    Tang, Z., Li, Chenwei, Kang, B., Gao, G., Li, Cheng, Zhang, Z., 2017. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45, W98-W102.
    [32]
    The Cancer Genome Atlas Research Network, Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R.M., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., Stuart, J.M., 2013. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113-1120.
    [33]
    Uhlen, M., Zhang, C., Lee, S., Sjostedt, E., Fagerberg, L., Bidkhori, G., Benfeitas, R., Arif, M., Liu, Z., Edfors, F., Sanli, K., Feilitzen, K. von, Oksvold, P., Lundberg, E., Hober, S., Nilsson, P., Mattsson, J., Schwenk, J.M., Brunnstrom, H., Glimelius, B., Sjoblom, T., Edqvist, P.-H., Djureinovic, D., Micke, P., Lindskog, C., Mardinoglu, A., Ponten, F., 2017. A pathology atlas of the human cancer transcriptome. Science 357, eaan2507.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (94) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return