[1] |
Allu, T.K., Oprea, T.I., 2005. Rapid evaluation of synthetic and molecular complexity for in silico chemistry. Cheminform 45, 1237-1243.
|
[2] |
Amin, S.B., Yip, W., Minvielle, S., Broyl, A., Li, Y., Hanlon, B.M., Swanson, D., Shah, P.K., Moreau, P., Der Holt, B.V., 2014. Gene expression profile alone is inadequate in predicting complete response in multiple myeloma. Leukemia 28, 2229-2234.
|
[3] |
Ayoub, R.G., 1982. On the nonsolvability of the general polynomial. Am. Math. Mon. 89, 397.
|
[4] |
Ayroles, J.F., Carbone, M.A., Stone, E.A., Jordan, K.W., Lyman, R.F., Magwire, M.M., Rollmann, S.M., Duncan, L., Lawrence, F., Anholt, R.R.H., 2009. Systems genetics of complex traits in Drosophila melanogaster. Nat. Genet. 41, 299-307.
|
[5] |
Benschop, J.J., Brabers, N., Van Leenen, D., Bakker, L., Van Deutekom, H.W.M., Van Berkum, N.L., Apweiler, E., Lijnzaad, P., Holstege, F.C.P., Kemmeren, P., 2010. A Consensus of Core Protein Complex Compositions for Saccharomyces cerevisiae. Mol. Cell 38, 916-928.
|
[6] |
Bodenhofer, U., Kothmeier, A., Hochreiter, S., 2011. APCluster: an R package for affinity propagation clustering. Bioinformatics 27, 2463-2464.
|
[7] |
Chen, B., Causton, H.C., Mancenido, D., Goddard, N.L., Perlstein, E.O., Peer, D., 2009. Harnessing gene expression to identify the genetic basis of drug resistance. Mol. Syst. Biol. 5, 310-310.
|
[8] |
Chen, H., Wu, C.-I., He, X., 2016. The regulator-executor-phenotype architecture shaped by natural selection. BioRxiv. doi: https://doi.org/10.1101/026443.
|
[9] |
Civelek, M., Lusis, A.J., 2014. Systems genetics approaches to understand complex traits. Nat. Rev. Genet. 15, 34-48.
|
[10] |
Feldman, D.P., Crutchfield, J.P., 1998. Measures of statistical complexity: why? Phys. Lett. A 238, 244-252.
|
[11] |
Gamazon, E.R., Wheeler, H.E., Shah, K.P., Mozaffari, S.V., Aquinomichaels, K., Carroll, R.J., Eyler, A.E., Denny, J.C., Nicolae, D.L., Cox, N.J., 2015. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet. 47, 1091-1098.
|
[12] |
Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B.W.J.H., Jansen, R., De Geus, E.J.C., Boomsma, D.I., Wright, F.A., 2016. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245.
|
[13] |
Ho, W.C., Zhang, J., 2014. The genotype-phenotype map of yeast complex traits: basic parameters and the role of natural selection. Mol. Biol. Evol. 31, 1568-1580.
|
[14] |
Janes, K.A., Albeck, J.G., Gaudet, S., Sorger, P.K., Lauffenburger, D.A., Yaffe, M.B., 2005. A Systems Model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 310, 1646-1653.
|
[15] |
Kemmeren, P., Sameith, K., De Pasch, L.V., Benschop, J.J., Lenstra, T.L., Margaritis, T., Duibhir, E.O., Apweiler, E., Van Wageningen, S., Ko, C.W., 2014. Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific repressors. Cell 157, 740-752.
|
[16] |
Komili, S., Silver, P.A., 2008. Coupling and coordination in gene expression processes: a systems biology view. Nat. Rev. Genet. 9, 38-48.
|
[17] |
Ladyman, J., Lambert, J., Wiesner, K., 2013. What is a complex system? Eur. J. Philos. Sci. 3, 33-67.
|
[18] |
Lee, I., Lehner, B., Crombie, C., Wong, W., Fraser, A.G., Marcotte, E.M., 2008. A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nat. Genet. 40, 181-188.
|
[19] |
Lloyd, K., Cree, I.A., Savage, R.S., 2015. Prediction of resistance to chemotherapy in ovarian cancer: a systematic review. BMC Cancer 15, 117-117.
|
[20] |
Lopezruiz, R., Mancini, H.L., Calbet, X., 2010. A statistical measure of complexity. Phys. Lett. A 209, 321-326.
|
[21] |
Ohnomachado, L., 2001. Modeling medical prognosis: survival analysis techniques. Comput.Biomed. Res. 34, 428-439.
|
[22] |
Ohya, Y., Sese, J., Yukawa, M., Sano, F., Nakatani, Y., Saito, T., Saka, A., Fukuda, T., Ishihara, S., Oka, S., 2005. High-dimensional and large-scale phenotyping of yeast mutants. Proc. Natl. Acad. Sci. U. S. A. 102, 19015-19020.
|
[23] |
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: Machine Learning in Python. J. Mach. Learn Res. 12, 2825-2830.
|
[24] |
Qian, W., Ma, D., Xiao, C., Wang, Z., Zhang, J., 2012. The Genomic Landscape and Evolutionary Resolution of Antagonistic Pleiotropy in Yeast. Cell Rep. 2, 1399-1410.
|
[25] |
Ritchie, M.D., Holzinger, E.R., Li, R., Pendergrass, S.A., Kim, D., 2015. Methods of integrating data to uncover genotype-phenotype interactions. Nat. Rev. Genet. 16, 85-97.
|
[26] |
Rosen, M., 2016. Niels Hendrik Abel and Equations of the Fifth Degree. Am. Math.Mon. 102, 495-505.
|
[27] |
Segal, E., Friedman, N., Kaminski, N., Regev, A., Koller, D., 2005. From signatures to models: understanding cancer using microarrays. Nat. Genet. 37, S38-S45.
|
[28] |
Teichmann, S.A., Babu, M.M., 2002. Conservation of gene co-regulation in prokaryotes and eukaryotes. Trends Biotechnol. 20, 407-410.
|
[29] |
Veer, L.J.V.T., Bernards, R., 2008. Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature 452, 564-570.
|
[30] |
Volm, M., Efferth, T., 2015. Prediction of cancer drug resistance and implications for personalized medicine. Front. Oncol. 5, 282.
|
[31] |
Zhu, J., Zhang, B., Smith, E.N., Drees, B., Brem, R.B., Kruglyak, L., Bumgarner, R.E., Schadt, E.E., 2008. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat. Genet. 40, 854-861.
|