5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 6
Jun.  2019
Turn off MathJax
Article Contents

Nlrc3-like is required for microglia maintenance in zebrafish

doi: 10.1016/j.jgg.2019.06.002
More Information
  • Corresponding author: E-mail address: bo.yan@shphc.org.cn (Bo Yan); E-mail address: mczhangwq@scut.edu.cn (Wenqing Zhang); E-mail address: zilong@ust.hk (Zilong Wen)
  • Received Date: 2018-11-01
  • Accepted Date: 2019-06-17
  • Rev Recd Date: 2019-06-17
  • Available Online: 2019-06-22
  • Publish Date: 2019-06-20
  • Microglia are tissue-resident macrophages residing in the central nervous system (CNS) and play critical roles in removing cellular debris and infectious agents as well as regulating neurogenesis and neuronal activities. Yet, the molecular basis underlying the establishment of microglia pool and the maintenance of their homeostasis in the CNS remain largely undefined. Here we report the identification and characterization of a mutant zebrafish, which harbors a point mutation in the nucleotide-binding oligomerization domain (NOD) like receptor gene nlrc3-like, resulting in the loss of microglia in a temperature sensitive manner. Temperature shift assay reveals that the late onset of nlrc3-like deficiency leads to excessive microglia cell death. Further analysis shows that the excessive microglia death in nlrc3-like deficient mutants is attributed, at least in part, to aberrant activation of canonical inflammasome pathway. Our study indicates that proper regulation of inflammasome cascade is critical for the maintenance of microglia homeostasis.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Aachoui, Y., Sagulenko, V., Miao, E.A., Stacey, K.J., 2013. Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection. Curr. Opin. Microbiol. 16, 319-326.
    [2]
    Barron, K.D., 1995. The microglial cell. A historical review. J. Neurol. Sci. 134 Suppl, 57-68.
    [3]
    Bergsbaken, T., Fink, S.L., Cookson, B.T., 2009. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7, 99-109.
    [4]
    Breitbach, K., Sun, G.W., Kohler, J., Eske, K., Wongprompitak, P., Tan, G., Liu, Y., Gan, Y.H., Steinmetz, I., 2009. Caspase-1 mediates resistance in murine melioidosis. Infect. Immun. 77, 1589-1595.
    [5]
    Chang, N., Sun, C., Gao, L., Zhu, D., Xu, X., Zhu, X., Xiong, J.W., Xi, J.J., 2013. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res. 23, 465-472.
    [6]
    Chen, G., Shaw, M.H., Kim, Y.G., Nunez, G., 2009. NOD-like receptors: role in innate immunity and inflammatory disease. Annu. Rev. Pathol. 4, 365-398.
    [7]
    Damm, A., Lautz, K., Kufer, T.A., 2013. Roles of NLRP10 in innate and adaptive immunity. Microbes Infect. 15, 516-523.
    [8]
    Danot, O., Marquenet, E., Vidal-Ingigliardi, D., Richet, E., 2009. Wheel of Life, Wheel of Death: A Mechanistic Insight into Signaling by STAND Proteins. Structure 17, 172-182.
    [9]
    Davoust, N., Vuaillat, C., Androdias, G., Nataf, S., 2008. From bone marrow to microglia: barriers and avenues. Trends Immunol. 29, 227-234.
    [10]
    Diebolder, C.A., Halff, E.F., Koster, A.J., Huizinga, E.G., Koning, R.I., 2015. Cryoelectron Tomography of the NAIP5/NLRC4 Inflammasome: Implications for NLR Activation. Structure 23, 2349-2357.
    [11]
    Erzberger, J.P., Berger, J.M., 2006. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys Biomol. Struct. 35, 93-114.
    [12]
    Fernandes-Alnemri, T., Wu, J., Yu, J.W., Datta, P., Miller, B., Jankowski, W., Rosenberg, S., Zhang, J., Alnemri, E.S., 2007. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 14, 1590-1604.
    [13]
    Fricker, M., Neher, J.J., Zhao, J.W., Thery, C., Tolkovsky, A.M., Brown, G.C., 2012. MFG-E8 mediates primary phagocytosis of viable neurons during neuroinflammation. J. Neurosci. 32, 2657-2666.
    [14]
    Grimsley, C.M., Kinchen, J.M., Tosello-Trampont, A.C., Brugnera, E., Haney, L.B., Lu, M., Chen, Q., Klingele, D., Hengartner, M.O., Ravichandran, K.S., 2004. Dock180 and ELMO1 proteins cooperate to promote evolutionarily conserved Rac-dependent cell migration. J. Biol. Chem. 279, 6087-6097.
    [15]
    Gurung, P., Malireddi, R.K., Anand, P.K., Demon, D., Vande Walle, L., Liu, Z., Vogel, P., Lamkanfi, M., Kanneganti, T.D., 2012. Toll or interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-beta (TRIF)-mediated caspase-11 protease production integrates Toll-like receptor 4 (TLR4) protein- and Nlrp3 inflammasome-mediated host defense against enteropathogens. J. Biol. Chem. 287, 34474-34483.
    [16]
    Hall, C., Flores, M.V., Storm, T., Crosier, K., Crosier, P., 2007. The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev. Biol. 7, 42.
    [17]
    Hanisch, U.K., Kettenmann, H., 2007. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10, 1387-1394.
    [18]
    Herbomel, P., Thisse, B., Thisse, C., 2001. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev. Biol. 238, 274-288.
    [19]
    Hu, Z., Yan, C., Liu, P., Huang, Z., Ma, R., Zhang, C., Wang, R., Zhang, Y., Martinon, F., Miao, D., Deng, H., Wang, J., Chang, J., Chai, J., 2013. Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341, 172-175.
    [20]
    Imamura, R., Wang, Y., Kinoshita, T., Suzuki, M., Noda, T., Sagara, J., Taniguchi, S., Okamoto, H., Suda, T., 2010. Anti-inflammatory activity of PYNOD and its mechanism in humans and mice. J. Immunol. 184, 5874-5884.
    [21]
    Jin, H., Li, L., Xu, J., Zhen, F., Zhu, L., Liu, P.P., Zhang, M., Zhang, W., Wen, Z., 2012. Runx1 regulates embryonic myeloid fate choice in zebrafish through a negative feedback loop inhibiting Pu.1 expression. Blood 119, 5239-5249.
    [22]
    Jin, H., Sood, R., Xu, J., Zhen, F., English, M.A., Liu, P.P., Wen, Z., 2009. Definitive hematopoietic stem/progenitor cells manifest distinct differentiation output in the zebrafish VDA and PBI. Development 136, 647-654.
    [23]
    Jorgensen, I., Miao, E.A., 2015. Pyroptotic cell death defends against intracellular pathogens. Immunol. Rev. 265, 130-142.
    [24]
    Kawai, T., Akira, S., 2009. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 21, 317-337.
    [25]
    Kayagaki, N., Stowe, I.B., Lee, B.L., O'Rourke, K., Anderson, K., Warming, S., Cuellar, T., Haley, B., Roose-Girma, M., Phung, Q.T., Liu, P.S., Lill, J.R., Li, H., Wu, J., Kummerfeld, S., Zhang, J., Lee, W.P., Snipas, S.J., Salvesen, G.S., Morris, L.X., Fitzgerald, L., Zhang, Y., Bertram, E.M., Goodnow, C.C., Dixit, V.M., 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666-671.
    [26]
    Kayagaki, N., Warming, S., Lamkanfi, M., Vande Walle, L., Louie, S., Dong, J., Newton, K., Qu, Y., Liu, J., Heldens, S., Zhang, J., Lee, W.P., Roose-Girma, M., Dixit, V.M., 2011. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117-121.
    [27]
    Kovacs, S.B., Miao, E.A., 2017. Gasdermins: Effectors of Pyroptosis. Trends Cell Biol. 27, 673-684.
    [28]
    Lamkanfi, M., Dixit, V.M., 2014. Mechanisms and functions of inflammasomes. Cell 157, 1013-1022.
    [29]
    Latz, E., Xiao, T.S., Stutz, A., 2013. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397-411.
    [30]
    Li, L., Jin, H., Xu, J., Shi, Y., Wen, Z., 2011. Irf8 regulates macrophage versus neutrophil fate during zebrafish primitive myelopoiesis. Blood 117, 1359-1369.
    [31]
    Li, L., Yan, B., Shi, Y.Q., Zhang, W.Q., Wen, Z.L., 2012a. Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration. J. Biol. Chem. 287, 25353-25360.
    [32]
    Li, Y., Du, X.F., Liu, C.S., Wen, Z.L., Du, J.L., 2012b. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev. Cell 23, 1189-1202.
    [33]
    Man, S.M., Kanneganti, T.D., 2015. Gasdermin D: the long-awaited executioner of pyroptosis. Cell Res. 25, 1183-1184.
    [34]
    Miao, E.A., Rajan, J.V., Aderem, A., 2011. Caspase-1-induced pyroptotic cell death. Immunol. Rev. 243, 206-214.
    [35]
    Mullins, M.C., Hammerschmidt, M., Haffter, P., Nusslein-Volhard, C., 1994. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr. Biol. 4, 189-202.
    [36]
    Nayak, D., Roth, T.L., McGavern, D.B., 2014. Microglia development and function. Annu. Rev. Immunol. 32, 367-402.
    [37]
    Park, D., Tosello-Trampont, A.C., Elliott, M.R., Lu, M., Haney, L.B., Ma, Z., Klibanov, A.L., Mandell, J.W., Ravichandran, K.S., 2007. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450, 430-434.
    [38]
    Peri, F., Nusslein-Volhard, C., 2008. Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell 133, 916-927.
    [39]
    Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., Zhang, F., 2013. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281-2308.
    [40]
    Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., Zhuang, Y., Cai, T., Wang, F., Shao, F., 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660-665.
    [41]
    Shiau, C.E., Monk, K.R., Joo, W., Talbot, W.S., 2013. An anti-inflammatory NOD-like receptor is required for microglia development. Cell Rep. 5, 1342-1352.
    [42]
    Solnica-Krezel, L., Schier, A.F., Driever, W., 1994. Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 136, 1401-1420.
    [43]
    Sun, G.W., Lu, J., Pervaiz, S., Cao, W.P., Gan, Y.H., 2005. Caspase-1 dependent macrophage death induced by Burkholderia pseudomallei. Cell Microbiol. 7, 1447-1458.
    [44]
    Svahn, A.J., Graeber, M.B., Ellett, F., Lieschke, G.J., Rinkwitz, S., Bennett, M.R., Becker, T.S., 2013. Development of ramified microglia from early macrophages in the zebrafish optic tectum. Dev. Neurobiol. 73, 60-71.
    [45]
    Trang, T., Beggs, S., Salter, M.W., 2011. Brain-derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain. Neuron. Glia. Biol. 7, 99-108.
    [46]
    Wang, Y., Gao, W., Shi, X., Ding, J., Liu, W., He, H., Wang, K., Shao, F., 2017. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99-103.
    [47]
    Wang, Y., Hasegawa, M., Imamura, R., Kinoshita, T., Kondo, C., Konaka, K., Suda, T., 2004. PYNOD, a novel Apaf-1/CED4-like protein is an inhibitor of ASC and caspase-1. Int. Immunol. 16, 777-786.
    [48]
    Watson, P.R., Gautier, A.V., Paulin, S.M., Bland, A.P., Jones, P.W., Wallis, T.S., 2000. Salmonella enterica serovars Typhimurium and Dublin can lyse macrophages by a mechanism distinct from apoptosis. Infect. Immun. 68, 3744-3747.
    [49]
    Westerfield, M., 1995. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio). 3rd ed. (Eugene, OR: University of Oregon Press, 1995).
    [50]
    Xu, J., Wang, T., Wu, Y., Jin, W., Wen, Z., 2016. Microglia colonization of developing zebrafish midbrain is promoted by apoptotic neuron and lysophosphatidylcholine. Dev. Cell. 38, 214-222.
    [51]
    Yan, B., Han, P., Pan, L., Lu, W., Xiong, J., Zhang, M., Zhang, W., Li, L., Wen, Z., 2014. IL-1beta and reactive oxygen species differentially regulate neutrophil directional migration and Basal random motility in a zebrafish injury-induced inflammation model. J. Immunol. 192, 5998-6008.
    [52]
    Zakrzewska, A., Cui, C., Stockhammer, O.W., Benard, E.L., Spaink, H.P., Meijer, A.H., 2010. Macrophage-specific gene functions in Spi1-directed innate immunity. Blood 116, e1-11.
    [53]
    Zhang, L., Chen, S., Ruan, J., Wu, J., Tong, A.B., Yin, Q., Li, Y., David, L., Lu, A., Wang, W.L., Marks, C., Ouyang, Q., Zhang, X., Mao, Y., Wu, H., 2015. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350, 404-409.
    [54]
    Zhen, F., Lan, Y., Yan, B., Zhang, W., Wen, Z., 2013. Hemogenic endothelium specification and hematopoietic stem cell maintenance employ distinct Scl isoforms. Development 140, 3977-3985.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (86) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return