5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 5
May  2019
Turn off MathJax
Article Contents

Rare inherited missense variants of POGZ associate with autism risk and disrupt neuronal development

doi: 10.1016/j.jgg.2019.04.002
More Information
  • Corresponding author: E-mail address: guohui@sklmg.edu.cn (Hui Guo); E-mail address: xiakun@sklmg.edu.cn (Kun Xia)
  • Received Date: 2018-07-20
  • Accepted Date: 2019-04-02
  • Rev Recd Date: 2019-03-22
  • Available Online: 2019-05-18
  • Publish Date: 2019-05-20
  • Excess de novo likely gene-disruptive and missense variants within dozens of genes have been identified in autism spectrum disorder (ASD) and other neurodevelopmental disorders. However, many rare inherited missense variants of these high-risk genes have not been thoroughly evaluated. In this study, we analyzed the rare missense variant burden of POGZ in a large cohort of ASD patients from the Autism Clinical and Genetic Resources in China (ACGC) and further dissected the functional effect of disease-associated missense variants on neuronal development. Our results showed a significant burden of rare missense variants in ASD patients compared to the control population (P = 4.6 × 10−5, OR = 3.96), and missense variants in ASD patients showed more severe predicted functional outcomes than those in controls. Furthermore, by leveraging published large-scale sequencing data of neurodevelopmental disorders (NDDs) and sporadic case reports, we identified 8 de novo missense variants of POGZ in NDD patients. Functional analysis revealed that two inherited, but not de novo, missense variants influenced the cellular localization of POGZ and failed to rescue the defects in neurite and dendritic spine development caused by Pogz knockdown in cultured mouse primary cortical neurons. Significantly, L1CAM, an autism candidate risk gene, is differentially expressed in POGZ deficient cell lines. Reduced expression of L1cam was able to partially rescue the neurite length defects caused byPogz knockdown. Our study showed the important roles of rare inherited missense variants of POGZ in ASD risk and neuronal development and identified the potential downstream targets of POGZ, which are important for further molecular mechanism studies.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Bartholomeeusen, K., Christ, F., Hendrix, J., Rain, J.C., Emiliani, S., Benarous, R., Debyser, Z., Gijsbers, R., De Rijck, J., 2009. Lens epithelium-derived growth factor/p75 interacts with the transposase-derived DDE domain of PogZ. J. Biol. Chem. 284, 11467-11477.
    [2]
    Casola, C., Lawing, A.M., Betran, E., Feschotte, C., 2007. PIF-like transposons are common in drosophila and have been repeatedly domesticated to generate new host genes. Mol. Biol. Evol. 24, 1872-1888.
    [3]
    Chen, J.A., Penagarikano, O., Belgard, T.G., Swarup, V., Geschwind, D.H., 2015. The emerging picture of autism spectrum disorder: genetics and pathology. Annu. Rev. Pathol. 10, 111-144.
    [4]
    Chuong, E.B., Elde, N.C., Feschotte, C., 2017. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71-86.
    [5]
    Chylack, L.T. Jr., Fu, L., Mancini, R., Martin-Rehrmann, M.D., Saunders, A.J., Konopka, G., Tian, D., Hedley-Whyte, E.T., Folkerth, R.D., Goldstein, L.E., 2004. Lens epithelium-derived growth factor (LEDGF/p75) expression in fetal and adult human brain. Exp. Eye Res. 79, 941-948.
    [6]
    Colombo, F., Racchetti, G., Meldolesi, J., 2014. Neurite outgrowth induced by NGF or L1CAM via activation of the TrkA receptor is sustained also by the exocytosis of enlargeosomes. Proc. Natl. Acad. Sci. U. S. A. 111, 16943-16948.
    [7]
    Cotney, J., Muhle, R.A., Sanders, S.J., Liu, L., Willsey, A.J., Niu, W., Liu, W., Klei, L., Lei, J., Yin, J., Reilly, S.K., Tebbenkamp, A.T., Bichsel, C., Pletikos, M., Sestan, N., Roeder, K., State, M.W., Devlin, B., Noonan, J.P., 2015. The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment. Nat. Commun. 6, 6404.
    [8]
    Dahme, M., Bartsch, U., Martini, R., Anliker, B., Schachner, M., Mantei, N., 1997. Disruption of the mouse L1 gene leads to malformations of the nervous system. Nat. Genet. 17, 346-349.
    [9]
    de la Torre-Ubieta, L., Won, H., Stein, J.L., Geschwind, D.H., 2016. Advancing the understanding of autism disease mechanisms through genetics. Nat. Med. 22, 345-361.
    [10]
    De Rubeis, S., He, X., Goldberg, A.P., Poultney, C.S., Samocha, K., Cicek, A.E., Kou, Y., Liu, L., Fromer, M., Walker, S., Singh, T., Klei, L., Kosmicki, J., Shih-Chen, F., Aleksic, B., Biscaldi, M., Bolton, P.F., Brownfeld, J.M., Cai, J., Campbell, N.G., Carracedo, A., Chahrour, M.H, Chiocchetti, A.G., Coon, H., Crawford, E.L., Curran, S.R., Dawson, G., Duketis, E., Fernandez, B.A., Gallagher, L., Geller, E., Guter, S.J., Hill, R.S., Ionita-Laza, J., Jimenz Gonzalez, P., Kilpinen, H., Klauck, S.M., Kolevzon, A., Lee, I., Lei, I., Lei, J., Lehtimaki, T., Lin, C.F., Ma'ayan, A., Marshall, C.R., McInnes, A.L, Neale, B., Owen, M.J., Ozaki, N., Parellada, M., Parr, J.R., Purcell, S., Puura, K., Rajagopalan, D., Rehnstrom, K., Reichenberg, A., Sabo, A., Sachse, M., Sanders, S.J., Schafer, C., Schulte-Ruther, M., Skuse, D., Stevens, C., Szatmari, P., Tammimies, K., Valladares, O., Voran, A., Li-San, W., Weiss, L.A., Willsey, A.J., Yu, T.W., Yuen, R.K., Deciphering Developmental Disorders Study, Homozygosity Mapping Collaborative for Autism, Consortium, U.K., Cook, E.H., Freitag, C.M., Gill, M, Hultman, C.M., Lehner, T., Palotie, A., Schellenberg, G.D., Sklar, P., State, M.W., Sutcliffe, J.S., Walsh, C.A., Scherer, S.W., Zwick, M.E., Barett, J.C., Cutler, D.J., Roeder, K., Devlin, B., Daly, M.J., Buxbaum, J.D., 2014. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209-215.
    [11]
    Deciphering Developmental Disorders Study, 2017. Prevalence and architecture of de novo mutations in developmental disorders. Nature 542, 433-438.
    [12]
    Deriziotis, P., O'Roak, B.J., Graham, S.A., Estruch, S.B., Dimitropoulou, D., Bernier, R.A., Gerdts, J., Shendure, J., Eichler, E.E., Fisher, S.E., 2014. De novo TBR1 mutations in sporadic autism disrupt protein functions. Nat. Commun. 5, 4954.
    [13]
    Ebert, D.H., Greenberg, M.E., 2013. Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493, 327-337.
    [14]
    Ethell, I.M., Pasquale, E.B., 2005. Molecular mechanisms of dendritic spine development and remodeling. Prog. Neurobiol. 75, 161-205.
    [15]
    Evsyukova, I., Plestant, C., Anton, E.S., 2013. Integrative mechanisms of oriented neuronal migration in the developing brain. Annu. Rev. Cell Dev. Biol. 29, 299-353.
    [16]
    Feschotte, C., 2008. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 9, 397-405.
    [17]
    Feschotte, C., Pritham, E.J., 2007. DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41, 331-368.
    [18]
    Fransen, E., Van Camp, G., Vits, L., Willems, P.J., 1997. L1-associated diseases: clinical geneticists divide, molecular geneticists unite. Hum. Mol. Genet. 6, 1625-1632.
    [19]
    Garcia-Perez, J.L., Widmann, T.J., Adams, I.R., 2016. The impact of transposable elements on mammalian development. Development 143, 4101-4114.
    [20]
    Ge, H., Si, Y., Roeder, R.G., 1998. Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J. 17, 6723-6729.
    [21]
    Geisheker, M.R., Heymann, G., Wang, T., Coe, B.P., Turner, T.N., Stessman, H.A.F., Hoekzema, K., Kvarnung, M., Shaw, M., Friend, K., Liebelt, J., Barnett, C., Thompson, E.M., Haan, E., Guo, H., Anderlid, B.M., Nordgren, A., Lindstrand, A., Vandeweyer, G., Alberti, A., Avola, E., Vinci, M., Giusto, S., Pramparo, T., Pierce, K., Nalabolu, S., Michaelson, J.J., Sedlacek, Z., Santen, G.W.E., Peeters, H., Hakonarson, H., Courchesne, E., Romano, C., Kooy, R.F., Bernier, R.A., Nordenskjold, M., Gecz, J., Xia, K., Zweifel, L.S., Eichler, E.E., 2017. Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains. Nat. Neurosci. 20, 1043-1051.
    [22]
    Gilissen, C., Hehir-Kwa, J.Y., Thung, D.T., van de Vorst, M., van Bon, B.W., Willemsen, M.H., Kwint, M., Janssen, I.M., Hoischen, A., Schenck, A., Leach, R., Klein, R., Tearle, R., Bo, T., Pfundt, R., Yntema, H.G., de Vries, B.B., Kleefstra, T., Brunner, H.G., Vissers, L.E., Veltman, J.A., 2014. Genome sequencing identifies major causes of severe intellectual disability. Nature 511, 344-347.
    [23]
    Hashimoto, R., Nakazawa, T., Tsurusaki, Y., Yasuda, Y., Nagayasu, K., Matsumura, K., Kawashima, H., Yamamori, H., Fujimoto, M., Ohi, K., Umeda-Yano, S., Fukunaga, M., Fujino, H., Kasai, A., Hayata-Takano, A., Shintani, N., Takeda, M., Matsumoto, N., Hashimoto, H., 2016. Whole-exome sequencing and neurite outgrowth analysis in autism spectrum disorder. J. Hum. Genet. 61, 199-206.
    [24]
    Haynes, K.A., Caudy, A.A., Collins, L., Elgin, S.C., 2006. Element 1360 and RNAi components contribute to HP1-dependent silencing of a pericentric reporter. Curr. Biol. 16, 2222-2227.
    [25]
    Hiatt, J.B., Pritchard, C.C., Salipante, S.J., O'Roak, B.J., Shendure, J., 2013. Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation. Genome Res. 23, 843-854.
    [26]
    Hlushchenko, I., Khanal, P., Abouelezz, A., Paavilainen, V.O., Hotulainen, P., 2018. ASD-associated de novo mutations in five actin regulators show both shared and distinct defects in dendritic spines and inhibitory synapses in cultured hippocampal neurons. Front. Cell. Neurosci. 12, 217.
    [27]
    Hoffman, E.J., Mintz, C.D., Wang, S., McNickle, D.G., Salton, S.R., Benson, D.L., 2008. Effects of ethanol on axon outgrowth and branching in developing rat cortical neurons. Neuroscience 157, 556-565.
    [28]
    Huang, X., Hu, J., Li, Y., Zhuyun Yang, Z., Zhu, H., Zhou, L., Ma, K., Schachner, M., Xiao, Z., Li, Y., 2013. The cell adhesion molecule L1 regulates the expression of FGF21 and enhances neurite outgrowth. Brain Res. 1530, 13-21.
    [29]
    Iossifov, I., O'Roak, B.J., Sanders, S.J., Ronemus, M., Krumm, N., Levy, D., Stessman, H.A., Witherspoon, K.T., Vives, L., Patterson, K.E., Smith, J.D., Paeper, B., Nickerson, D.A., Dea, J., Dong, S., Gonzalez, L.E., Mandell, J.D., Mane, S.M., Murtha, M.T., Sullivan, C.A., Walker, M.F., Waqar, Z., Wei, L., Willsey, A.J., Yamrom, B., Lee, Y.H., Grabowska, E., Dalkic, E., Wang, Z., Marks, S., Andrews, P., Leotta, A., Kendall, J., Hakker, I., Rosenbaum, J., Ma, B., Rodgers, L., Troge, J., Narzisi, G., Yoon, S., Schatz, M.C., Ye, K., McCombie, W.R., Shendure, J., Eichler, E.E., State, M.W., Wigler, M., 2014. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216-221.
    [30]
    Isidor, B., Kury, S., Rosenfeld, J.A., Besnard, T., Schmitt, S., Joss, S., Davies, S.J., Lebel, R.R., Henderson, A., Schaaf, C.P., Streff, H.E., Yang, Y., Jain, V., Chida, N., Latypova, X., Le Caignec, C., Cogne, B., Mercier, S., Vincent, M., Colin, E., Bonneau, D., Denomme, A.S., Parent, P., Gilbert-Dussardier, B., Odent, S., Toutain, A., Piton, A., Dina, C., Donnart, A., Lindenbaum, P., Charpentier, E., Redon, R., Iemura, K., Ikeda, M., Tanaka, K., Bezieau, S., 2016. De novo truncating mutations in the kinetochore-microtubules attachment gene CHAMP1 cause syndromic intellectual disability. Hum. Mutat. 37, 354-358.
    [31]
    Jeste, S.S., Geschwind, D.H., 2014. Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nat. Rev. Neurol. 10, 74-81.
    [32]
    Jouet, M., Rosenthal, A., Armstrong, G., MacFarlane, J., Stevenson, R., Paterson, J., Metzenberg, A., Ionasescu, V., Temple, K., Kenwrick, S., 1994. X-linked spastic paraplegia (SPG1), MASA syndrome and X-linked hydrocephalus result from mutations in the L1 gene. Nat. Genet. 7, 402-407.
    [33]
    Kamiguchi, H., 2003. The mechanism of axon growth: what we have learned from the cell adhesion molecule L1. Mol. Neurobiol. 28, 219-228.
    [34]
    Keenan, S., Wetherill, S.J., Ugbode, C.I., Chawla, S., Brackenbury, W.J., Evans, G.J., 2017. Inhibition of N1-Src kinase by a specific SH3 peptide ligand reveals a role for N1-Src in neurite elongation by L1-CAM. Sci. Rep. 7, 43106.
    [35]
    Kenwrick, S., Watkins, A., De Angelis, E., 2000. Neural cell recognition molecule L1: relating biological complexity to human disease mutations. Hum. Mol. Genet. 9, 879-886.
    [36]
    Kiefel, H., Pfeifer, M., Bondong, S., Hazin, J., Altevogt, P., 2011. Linking L1CAM-mediated signaling to NF-kappaB activation. Trends Mol. Med. 17, 178-187.
    [37]
    Krumm, N., Turner, T.N., Baker, C., Vives, L., Mohajeri, K., Witherspoon, K., Raja, A., Coe, B.P., Stessman, H.A., He, Z.X., Leal, S.M., Bernier, R., Eichler, E.E., 2015. Excess of rare, inherited truncating mutations in autism. Nat. Genet. 47, 582-588.
    [38]
    Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine, R., McEwan, P., McKernan, K., Meldrim, J., Mesirov, J.P., Miranda, C., Morris, W., Naylor, J., Raymond, C, Rosetti, M., Santos, R., Sheridan, A., Sougnez, C., Stange-Thomann, Y., Stojanovic, N., Subramanian, A., Wyman, D., Rogers, J., Sulston, J., Ainscough, R., Beck, S., Bentley, D., Burton, J., Clee, C., Carter, N., Coulson, A., Deadman, R., Deloukas, P., Dunham, A., Dunham, I., Durbin, R., French, L., Grafham, D., Gregory, S., Hubbard, T., Humphray, S., Hunt, A., Jones, M., Lloyd, C., McMurray, A., Matthews, L., Mercer, S., Milne, S., Mullikin, J.C., Mungall, A., Plumb, R., Ross, M., Shownkeen, R., Sims, S., Waterston, R.H., Wilson, R.K., Hillier, L.W., McPherson, J.D, Marra, M.A., Mardis, E.R., Fulton, L.A., Chinwalla, A.T., Pepin, K.H., Gish, W.R., Chissoe, S.L., Wendl, M.C., Delehaunty, K.D., Miner, T.L., Delehaunty, A., Kramer, J.B., Cook, L.L., Fulton, R.S., Johnson, D.L., Minx, P.J., Clifton, S.W., Hawkins, T., Branscomb, E., Predki, P., Richardson, P., Wenning, S, Slezak, T., Doggett, N., Cheng, J.F., Olsen, A., Lucas, S., Elkin, C., Uberbacher, E., Frazier, M., Gibbs, R.A., Muzny, D.M., Scherer, S.E., Bouck, J.B., Sodergren, E.J., Worley, K.C., Rives, C.M., Gorrell, J.H., Metzker, M.L., Naylor, S.L., Kucherlapati, R.S., Nelson, D.L., Weinstock, G.M., Sakaki, Y, Fujiyama, A., Hattori, M., Yada, T., Toyoda, A., Itoh, T., Kawagoe, C., Watanabe, H., Totoki, Y., Taylor, T., Weissenbach, J., Heilig, R., Saurin, W., Artiguenave, F., Brottier, P., Bruls, T., Pelletier, E., Robert, C., Wincker, P., Smith, D.R., Doucette-Stamm, L., Rubenfield, M., Weinstock, K., Lee, H.M., Dubois, J., Rosenthal, A., Platzer, M, Nyakatura, G., Taudien, S., Rump, A., Yang, H., Yu, J., Wang, J., Huang, G., Gu, J., Hood, L., Rowen, L., Madan, A., Qin, S., Davis, R.W., Federspiel, N.A., Abola, A.P., Proctor, M.J., Myers, R.M., Schmutz, J., Dickson, M., Grimwood, J., Cox, D.R., Olson, M.V., Kaul, R., Raymond, C., Shimizu, N., Kawasaki, K, Minoshima, S., Evans, G.A., Athanasiou, M., Schultz, R., Roe, B.A., Chen, F., Pan, H., Ramser, J., Lehrach, H., Reinhardt, R., McCombie, W.R., de la Bastide, M., Dedhia, N., Blocker, H., Hornischer, K., Nordsiek, G., Agarwala, R., Aravind, L., Bailey, J.A., Bateman, A., Batzoglou, S., Birney, E., Bork, P., Brown, D.G, Burge, C.B., Cerutti, L., Chen, H.C., Church, D., Clamp, M., Copley, R.R., Doerks, T., Eddy, S.R., Eichler, E.E., Furey, T.S., Galagan, J., Gilbert, J.G., Harmon, C., Hayashizaki, Y., Haussler, D., Hermjakob, H., Hokamp, K., Jang, W., Johnson, L.S., Jones, T.A., Kasif, S., Kaspryzk, A., Kennedy, S., Kent, W.J., Kitts, P., Koonin, E.V, Korf, I., Kulp, D., Lancet, D., Lowe, T.M., McLysaght, A., Mikkelsen, T., Moran, J.V., Mulder, N., Pollara, V.J., Ponting, C.P., Schuler, G., Schultz, J., Slater, G., Smit, A.F., Stupka, E., Szustakowki, J., Thierry-Mieg, D., Thierry-Mieg, J., Wagner, L., Wallis, J., Wheeler, R., Williams, A., Wolf, Y.I., Wolfe, K.H, Yang, S.P., Yeh, R.F., Collins, F., Guyer, M.S., Peterson, J., Felsenfeld, A., Wetterstrand, K.A., Patrinos, A., Morgan, M.J., de Jong, P., Catanese, J.J., Osoegawa, K., Shizuya, H., Choi, S., Chen, Y.J., Szustakowki, J., International Human Genome Sequencing, C., 2001. Initial sequencing and analysis of the human genome. Nature 409, 860-921.
    [39]
    Lefebvre, J.L., Sanes, J.R., Kay, J.N., 2015. Development of dendritic form and function. Annu. Rev. Cell Dev. Biol. 31, 741-777.
    [40]
    Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T., O'Donnell-Luria, A.H., Ware, J.S., Hill, A.J., Cummings, B.B., Tukiainen, T., Birnbaum, D.P., Kosmicki, J.A., Duncan, L.E., Estrada, K., Zhao, F., Zou, J., Pierce-Hoffman, E., Berghout, J., Cooper, D.N., Deflaux, N., DePristo, M., Do, R., Flannick, J., Fromer, M., Gauthier, L., Goldstein, J., Gupta, N., Howrigan, D., Kiezun, A., Kurki, M.I., Moonshine, A.L., Natarajan, P., Orozco, L., Peloso, G.M., Poplin, R., Rivas, M.A., Ruano-Rubio, V., Rose, S.A., Ruderfer, D.M., Shakir, K., Stenson, P.D., Stevens, C., Thomas, B.P., Tiao, G., Tusie-Luna, M.T., Weisburd, B., Won, H.H., Yu, D., Altshuler, D.M., Ardissino, D., Boehnke, M., Danesh, J., Donnelly, S., Elosua, R., Florez, J.C., Gabriel, S.B., Getz, G., Glatt, S.J., Hultman, C.M., Kathiresan, S., Laakso, M., McCarroll, S., McCarthy, M.I., McGovern, D., McPherson, R., Neale, B.M., Palotie, A., Purcell, S.M., Saleheen, D., Scharf, J.M., Sklar, P., Sullivan, P.F., Tuomilehto, J., Tsuang, M.T., Watkins, H.C., Wilson, J.G., Daly, M.J., MacArthur, D.G., Exome Aggregation, C., 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285-291.
    [41]
    Lelieveld, S.H., Reijnders, M.R., Pfundt, R., Yntema, H.G., Kamsteeg, E.J., de Vries, P., de Vries, B.B., Willemsen, M.H., Kleefstra, T., Lohner, K., Vreeburg, M., Stevens, S.J., van der Burgt, I., Bongers, E.M., Stegmann, A.P., Rump, P., Rinne, T., Nelen, M.R., Veltman, J.A., Vissers, L.E., Brunner, H.G., Gilissen, C., 2016. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat. Neurosci. 19, 1194-1196.
    [42]
    Lynch, V.J., Leclerc, R.D., May, G., Wagner, G.P., 2011. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat. Genet. 43, 1154-1159.
    [43]
    Mateo, L., Ullastres, A., Gonzalez, J., 2014. A transposable element insertion confers xenobiotic resistance in Drosophila. PLoS Genet. 10, e1004560.
    [44]
    Matsumura, K., Nakazawa, T., Nagayasu, K., Gotoda-Nishimura, N., Kasai, A., Hayata-Takano, A., Shintani, N., Yamamori, H., Yasuda, Y., Hashimoto, R., Hashimoto, H., 2016. De novo POGZ mutations in sporadic autism disrupt the DNA-binding activity of POGZ. J. Mol. Psychiatry 4, 1.
    [45]
    Menzel, L., Paterka, M., Bittner, S., White, R., Bobkiewicz, W., van Horssen, J., Schachner, M., Witsch, E., Kuhlmann, T., Zipp, F., Schafer, M.K., 2016. Down-regulation of neuronal L1 cell adhesion molecule expression alleviates inflammatory neuronal injury. Acta Neuropathol. 132, 703-720.
    [46]
    Mouse Genome Sequencing Consortium, Waterston, R.H., Lindblad-Toh, K., Birney, E., Rogers, J., Abril, J.F., Agarwal, P., Agarwala, R., Ainscough, R., Alexandersson, M., An, P., Antonarakis, S.E., Attwood, J., Baertsch, R., Bailey, J., Barlow, K., Beck, S., Berry, E., Birren, B., Bloom, T., Bork, P., Botcherby, M., Bray, N., Brent, M.R., Brown, D.G., Brown, S.D., Bult, C., Burton, J., Butler, J., Campbell, R.D., Carninci, P., Cawley, S., Chiaromonte, F., Chinwalla, A.T., Church, D.M., Clamp, M., Clee, C., Collins, F.S., Cook, L.L., Copley, R.R., Coulson, A., Couronne, O., Cuff, J., Curwen, V., Cutts, T., Daly, M., David, R., Davies, J., Delehaunty, K.D., Deri, J., Dermitzakis, E.T., Dewey, C., Dickens, N.J., Diekhans, M., Dodge, S., Dubchak, I., Dunn, D.M., Eddy, S.R., Elnitski, L., Emes, R.D., Eswara, P., Eyras, E., Felsenfeld, A., Fewell, G.A., Flicek, P., Foley, K., Frankel, W.N., Fulton, L.A., Fulton, R.S., Furey, T.S., Gage, D., Gibbs, R.A, Glusman, G., Gnerre, S., Goldman, N., Goodstadt, L., Grafham, D., Graves, T.A., Green, E.D., Gregory, S., Guigo, R., Guyer, M., Hardison, R.C., Haussler, D., Hayashizaki, Y., Hillier, L.W., Hinrichs, A., Hlavina, W., Holzer, T., Hsu, F., Hua, A., Hubbard, T., Hunt, A., Jackson, I., Jaffe, D.B., Johnson, L.S., Jones, M., Jones, T.A., Joy, A., Kamal, M, Karlsson, E.K., Karolchik, D., Kasprzyk, A., Kawai, J., Keibler, E., Kells, C., Kent, W.J., Kirby, A., Kolbe, D.L., Korf, I., Kucherlapati, R.S., Kulbokas, E.J., Kulp, D., Landers, T., Leger, J.P., Leonard, S., Letunic, I., Levine, R., Li, J., Li, M., Lloyd, C., Lucas, S., Ma, B., Maglott, D.R., Mardis, E.R., Matthews, L., Mauceli, E., Mayer, J.H., McCarthy, M., McCombie, W.R, McLaren, S., McLay, K., McPherson, J.D., Meldrim, J., Meredith, B., Mesirov, J.P., Miller, W., Miner, T.L., Mongin, E., Montgomery, K.T., Morgan, M., Mott, R., Mullikin, J.C., Muzny, D.M., Nash, W.E., Nelson, J.O., Nhan, M.N., Nicol, R., Ning, Z., Nusbaum, C., O'Connor, M.J., Okazaki, Y., Oliver, K., Overton-Larty, E., Pachter, L., Parra, G., Pepin, K.H, Peterson, J., Pevzner, P., Plumb, R., Pohl, C.S., Poliakov, A., Ponce, T.C., Ponting, C.P., Potter, S., Quail, M., Reymond, A., Roe, B.A., Roskin, K.M., Rubin, E.M., Rust, A.G., Santos, R., Sapojnikov, V., Schultz, B., Schultz, J., Schwartz, M.S., Schwartz, S., Scott, C., Seaman, S., Searle, S., Sharpe, T., Sheridan, A., Shownkeen, R., Sims, S, Singer, J.B., Slater, G., Smit, A., Smith, D.R., Spencer, B., Stabenau, A., Stange-Thomann, N., Sugnet, C., Suyama, M., Tesler, G., Thompson, J., Torrents, D., Trevaskis, E., Tromp, J., Ucla, C., Ureta-Vidal, A., Vinson, J.P., Von Niederhausern, A.C., Wade, C.M., Wall, M., Weber, R.J., Weiss, R.B., Wendl, M.C., West, A.P., Wetterstrand, K., Wheeler, R, Whelan, S., Wierzbowski, J., Willey, D., Williams, S., Wilson, R.K., Winter, E., Worley, K.C., Wyman, D., Yang, S., Yang, S.P., Zdobnov, E.M., Zody, M.C., Lander, E.S., 2002. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520-562.
    [47]
    Nozawa, R.S., Nagao, K., Masuda, H.T., Iwasaki, O., Hirota, T., Nozaki, N., Kimura, H., Obuse, C., 2010. Human POGZ modulates dissociation of HP1alpha from mitotic chromosome arms through Aurora B activation. Nat. Cell Biol. 12, 719-727.
    [48]
    O'Roak, B.J., Vives, L., Fu, W., Egertson, J.D., Stanaway, I.B., Phelps, I.G., Carvill, G., Kumar, A., Lee, C., Ankenman, K., Munson, J., Hiatt, J.B., Turner, E.H., Levy, R., O'Day, D.R., Krumm, N., Coe, B.P., Martin, B.K., Borenstein, E., Nickerson, D.A., Mefford, H.C., Doherty, D., Akey, J.M., Bernier, R., Eichler, E.E., Shendure, J., 2012. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338, 1619-1622.
    [49]
    Patzke, C., Acuna, C., Giam, L.R., Wernig, M., Sudhof, T.C., 2016. Conditional deletion of L1CAM in human neurons impairs both axonal and dendritic arborization and action potential generation. J. Exp. Med. 213, 499-515.
    [50]
    Peng, S.P., Schachner, M., Boddeke, E., Copray, S., 2016. Effect of cell adhesion molecules on the neurite outgrowth of induced pluripotent stem cell-derived dopaminergic neurons. Cell Reprogram. 18, 55-66.
    [51]
    Penzes, P., Cahill, M.E., Jones, K.A., VanLeeuwen, J.E., Woolfrey, K.M., 2011. Dendritic spine pathology in neuropsychiatric disorders. Nat. Neurosci. 14, 285-293.
    [52]
    Rosenthal, A., Jouet, M., Kenwrick, S., 1992. Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nat. Genet. 2, 107-112.
    [53]
    Sanders, S.J., He, X., Willsey, A.J., Ercan-Sencicek, A.G., Samocha, K.E., Cicek, A.E., Murtha, M.T., Bal, V.H., Bishop, S.L., Dong, S., Goldberg, A.P., Jinlu, C., Keaney, J.F. 3rd., Klei, L., Mandell, J.D., Moreno-De-Luca, D., Poultney, C.S., Robinson, E.B., Smith, L., Solli-Nowlan, T., Su, M.Y., Teran, N.A., Walker, M.F., Werling, D.M., Beaudet, A.L., Cantor, R.M., Fombonne, E., Geschwind, D.H., Grice, D.E., Lord, C., Lowe, J.K., Mane, S.M., Martin, D.M., Morrow, E.M., Talkowski, M.E., Sutcliffe, J.S., Walsh, C.A., Yu, T.W., Autism Sequencing, C., Ledbetter, D.H., Martin, C.L., Cook, E.H., Buxbaum, J.D., Daly, M.J., Devlin, B., Roeder, K., State, M.W., 2015. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87, 1215-1233.
    [54]
    Stessman, H.A., Willemsen, M.H., Fenckova, M., Penn, O., Hoischen, A., Xiong, B., Wang, T., Hoekzema, K., Vives, L., Vogel, I., Brunner, H.G., van der Burgt, I., Ockeloen, C.W., Schuurs-Hoeijmakers, J.H., Klein Wassink-Ruiter, J.S., Stumpel, C., Stevens, S.J., Vles, H.S., Marcelis, C.M., van Bokhoven, H., Cantagrel, V., Colleaux, L., Nicouleau, M., Lyonnet, S., Bernier, R.A., Gerdts, J., Coe, B.P., Romano, C., Alberti, A., Grillo, L., Scuderi, C., Nordenskjold, M., Kvarnung, M., Guo, H., Xia, K., Piton, A., Gerard, B., Genevieve, D., Delobel, B., Lehalle, D., Perrin, L., Prieur, F., Thevenon, J., Gecz, J., Shaw, M., Pfundt, R., Keren, B., Jacquette, A., Schenck, A., Eichler, E.E., Kleefstra, T., 2016. Disruption of POGZ is associated with intellectual disability and autism spectrum disorders. Am. J. Hum. Genet. 98, 541-552.
    [55]
    Stumpel, C., Vos, Y.J., 1993. L1 Syndrome, GeneReviews®. Seattle, WA.
    [56]
    Suliman, R., Ben-David, E., Shifman, S., 2014. Chromatin regulators, phenotypic robustness, and autism risk. Front. Genet. 5, 81.
    [57]
    Takano, T., Xu, C., Funahashi, Y., Namba, T., Kaibuchi, K., 2015. Neuronal polarization. Development 142, 2088-2093.
    [58]
    Vos, Y.J., Hofstra, R.M., 2010. An updated and upgraded L1CAM mutation database. Hum. Mutat. 31, E1102-1109.
    [59]
    Wang, T., Guo, H., Xiong, B., Stessman, H.A., Wu, H., Coe, B.P., Turner, T.N., Liu, Y., Zhao, W., Hoekzema, K., Vives, L., Xia, L., Tang, M., Ou, J., Chen, B., Shen, Y., Xun, G., Long, M., Lin, J., Kronenberg, Z.N., Peng, Y., Bai, T., Li, H., Ke, X., Hu, Z., Zhao, J., Zou, X., Xia, K., Eichler, E.E., 2016. De novo genic mutations among a Chinese autism spectrum disorder cohort. Nat. Commun. 7, 13316.
    [60]
    Weller, S., Gartner, J., 2001. Genetic and clinical aspects of X-linked hydrocephalus (L1 disease): mutations in the L1CAM gene. Hum. Mutat. 18, 1-12.
    [61]
    Wen, Z., Cheng, T.L., Li, G.Z., Sun, S.B., Yu, S.Y., Zhang, Y., Du, Y.S., Qiu, Z., 2017. Identification of autism-related MECP2 mutations by whole-exome sequencing and functional validation. Mol. Autism 8, 43.
    [62]
    White, J., Beck, C.R., Harel, T., Posey, J.E., Jhangiani, S.N., Tang, S., Farwell, K.D., Powis, Z., Mendelsohn, N.J., Baker, J.A., Pollack, L., Mason, K.J., Wierenga, K.J., Arrington, D.K., Hall, M., Psychogios, A., Fairbrother, L., Walkiewicz, M., Person, R.E., Niu, Z., Zhang, J., Rosenfeld, J.A., Muzny, D.M., Eng, C., Beaudet, A.L., Lupski, J.R., Boerwinkle, E., Gibbs, R.A., Yang, Y., Xia, F., Sutton, V.R., 2016. POGZ truncating alleles cause syndromic intellectual disability. Genome Med. 8, 3.
    [63]
    Williams, E.J., Doherty, P., Turner, G., Reid, R.A., Hemperly, J.J., Walsh, F.S., 1992. Calcium influx into neurons can solely account for cell contact-dependent neurite outgrowth stimulated by transfected L1. J. Cell Biol. 119, 883-892.
    [64]
    Williams, E.J., Furness, J., Walsh, F.S., Doherty, P., 1994. Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-cadherin. Neuron 13, 583-594.
    [65]
    Willsey, A.J., Sanders, S.J., Li, M., Dong, S., Tebbenkamp, A.T., Muhle, R.A., Reilly, S.K., Lin, L., Fertuzinhos, S., Miller, J.A., Murtha, M.T., Bichsel, C., Niu, W., Cotney, J., Ercan-Sencicek, A.G., Gockley, J., Gupta, A.R., Han, W., He, X., Hoffman, E.J., Klei, L., Lei, J., Liu, W., Liu, L., Lu, C., Xu, X., Zhu, Y., Mane, S.M., Lein, E.S., Wei, L., Noonan, J.P., Roeder, K., Devlin, B., Sestan, N., State, M.W., 2013. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 155, 997-1007.
    [66]
    Wu, J., Yu, P., Jin, X., Xu, X., Li, J., Li, Z., Wang, M., Wang, T., Wu, X., Jiang, Y., Cai, W., Mei, J., Min, Q., Xu, Q., Zhou, B., Guo, H., Wang, P., Zhou, W., Hu, Z., Li, Y., Cai, T., Wang, Y., Xia, K., Jiang, Y.H., Sun, Z.S., 2018. Genomic landscapes of Chinese sporadic autism spectrum disorders revealed by whole-genome sequencing. J. Genet. Genomics 45, 527-538.
    [67]
    Yoshimura, T., Arimura, N., Kaibuchi, K., 2006. Signaling networks in neuronal polarization. J. Neurosci. 26, 10626-10630.
    [68]
    Yuen, R. KC., Merico, D., Bookman, M., Howe, J.L., Thiruvahindrapuram, B., Patel, R.V., Whitney, J., Deflaux, N., Bingham, J., Wang, Z., Pellecchia, G., Buchanan, J.A., Walker, S., Marshall, C.R., Uddin, M., Zarrei, M., Deneault, E., D'Abate, L., Chan, A.J., Koyanagi, S., Paton, T., Pereira, S.L., Hoang, N., Engchuan, W., Higginbotham, E.J., Ho, K., Lamoureux, S., Li, W., MacDonald, J.R., Nalpathamkalam, T., Sung, W.W., Tsoi, F.J., Wei, J., Xu, L., Tasse, A.M., Kirby, E., Van Etten, W., Twigger, S., Roberts, W., Drmic, I., Jilderda, S., Modi, B.M., Kellam, B., Szego, M., Cytrynbaum, C., Weksberg, R., Zwaigenbaum, L., Woodbury-Smith, M., Brian, J., Senman, L., Iaboni, A., Doyle-Thomas, K., Thompson, A., Chrysler, C., Leef, J., Savion-Lemieux, T., Smith, I.M., Liu, X., Nicolson, R., Seifer, V., Fedele, A., Cook, E.H., Dager, S., Estes, A., Gallagher, L., Malow, B.A., Parr, J.R., Spence, S.J., Vorstman, J., Frey, B.J., Robinson, J.T., Strug, L.J., Fernandez, B.A., Elsabbagh, M., Carter, M.T., Hallmayer, J., Knoppers, B.M., Anagnostou, E., Szatmari, P., Ring, R.H., Glazer, D., Pletcher, M.T., Scherer, S.W., 2017. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat. Neurosci. 20, 602-611.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (84) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return