[1] |
Bi, J., Xiang, Y., Chen, H. et al. J. Cell Sci., 125 (2012),pp. 3568-3577
|
[2] |
Bjorkoy, G., Lamark, T., Brech, A. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death J. Cell Biol., 171 (2005),pp. 603-614
|
[3] |
Boyault, C., Gilquin, B., Zhang, Y. et al. HDAC6-p97/VCP controlled polyubiquitin chain turnover EMBO J., 25 (2006),pp. 3357-3366
|
[4] |
Boyault, C., Zhang, Y., Fritah, S. et al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates Genes Dev., 21 (2007),pp. 2172-2181
|
[5] |
Cha-Molstad, H., Yu, J.E., Feng, Z. et al. p62/SQSTM1/Sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis Nat. Commun., 8 (2017),p. 102
|
[6] |
Chatterjee, D., Katewa, S.D., Qi, Y. et al. Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. 17959-17964
|
[7] |
Cingolani, F., Czaja, M.J. Regulation and functions of autophagic lipolysis Trends Endocrinol. Metabol., 27 (2016),pp. 696-705
|
[8] |
Cinnamon, E., Makki, R., Sawala, A. et al. PLoS Genet., 12 (2016)
|
[9] |
Dikic, I., Johansen, T., Kirkin, V. Selective autophagy in cancer development and therapy Cancer Res., 70 (2010),pp. 3431-3434
|
[10] |
Du, G., Jiao, R. To prevent neurodegeneration: HDAC6 uses different strategies for different challenges Commun. Integr. Biol., 4 (2011),pp. 139-142
|
[11] |
Du, G., Liu, X., Chen, X. et al. Mol. Biol. Cell, 21 (2010),pp. 2128-2137
|
[12] |
Fusco, C., Micale, L., Egorov, M. et al. The E3-ubiquitin ligase TRIM50 interacts with HDAC6 and p62, and promotes the sequestration and clearance of ubiquitinated proteins into the aggresome PLoS One, 7 (2012)
|
[13] |
Green, D.R., Levine, B. To be or not to be? How selective autophagy and cell death govern cell fate Cell, 157 (2014),pp. 65-75
|
[14] |
Gutierrez, E., Wiggins, D., Fielding, B. et al. Nature, 445 (2007),pp. 275-280
|
[15] |
Haggarty, S.J., Koeller, K.M., Wong, J.C. et al. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 4389-4394
|
[16] |
Hubbert, C., Guardiola, A., Shao, R. et al. HDAC6 is a microtubule-associated deacetylase Nature, 417 (2002),pp. 455-458
|
[17] |
Iwata, A., Riley, B.E., Johnston, J.A. et al. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin J. Biol. Chem., 280 (2005),pp. 40282-40292
|
[18] |
Kaur, J., Debnath, J. Autophagy at the crossroads of catabolism and anabolism Nat. Rev. Mol. Cell Biol., 16 (2015),pp. 461-472
|
[19] |
Kaushik, S., Cuervo, A.M. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis Nat. Cell Biol., 17 (2015),pp. 759-770
|
[20] |
Kaushik, S., Cuervo, A.M. AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA Autophagy, 12 (2016),pp. 432-438
|
[21] |
Kawaguchi, Y., Kovacs, J.J., McLaurin, A. et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress Cell, 115 (2003),pp. 727-738
|
[22] |
Khaminets, A., Heinrich, T., Mari, M. et al. Regulation of endoplasmic reticulum turnover by selective autophagy Nature, 522 (2015),pp. 354-358
|
[23] |
Kirkin, V., McEwan, D.G., Novak, I. et al. A role for ubiquitin in selective autophagy Mol. Cell, 34 (2009),pp. 259-269
|
[24] |
Kunte, A.S., Matthews, K.A., Rawson, R.B. Cell Metabol., 3 (2006),pp. 439-448
|
[25] |
Lapierre, L.R., Silvestrini, M.J., Nunez, L. et al. Autophagy, 9 (2013),pp. 278-286
|
[26] |
Lazarou, M., Sliter, D.A., Kane, L.A. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy Nature, 524 (2015),pp. 309-314
|
[27] |
Lee, J.Y., Koga, H., Kawaguchi, Y. et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy EMBO J., 29 (2010),pp. 969-980
|
[28] |
Lee, Y., Chou, T.F., Pittman, S.K. et al. Keap1/Cullin3 modulates p62/SQSTM1 activity via UBA domain ubiquitination Cell Rep., 19 (2017),pp. 188-202
|
[29] |
Li, S., Dou, X., Ning, H. et al. Sirtuin 3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity Hepatology, 66 (2017),pp. 936-952
|
[30] |
Mancias, J.D., Wang, X., Gygi, S.P. et al. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy Nature, 509 (2014),pp. 105-109
|
[31] |
Martinez-Lopez, N., Singh, R. Autophagy and lipid droplets in the liver Annu. Rev. Nutr., 35 (2015),pp. 215-237
|
[32] |
Matsumoto, G., Wada, K., Okuno, M. et al. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins Mol. Cell, 44 (2011),pp. 279-289
|
[33] |
Matsuyama, A., Shimazu, T., Sumida, Y. et al. EMBO J., 21 (2002),pp. 6820-6831
|
[34] |
Mochida, K., Oikawa, Y., Kimura, Y. et al. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus Nature, 522 (2015),pp. 359-362
|
[35] |
Oku, M., Maeda, Y., Kagohashi, Y. et al. Evidence for ESCRT- and clathrin-dependent microautophagy J. Cell Biol., 216 (2017),pp. 3263-3274
|
[36] |
Orvedahl, A., , Xiao, G., Ng, A. et al. Image-based genome-wide siRNA screen identifies selective autophagy factors Nature, 480 (2011),pp. 113-117
|
[37] |
Pandey, U.B., Nie, Z., Batlevi, Y. et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS Nature, 447 (2007),pp. 859-863
|
[38] |
Parvy, J.P., Napal, L., Rubin, T. et al. PLoS Genet., 8 (2012)
|
[39] |
Perry, R.J., Samuel, V.T., Petersen, K.F. et al. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes Nature, 510 (2014),pp. 84-91
|
[40] |
Rodrigues, D.A., Thota, S., Fraga, C.A. Beyond the selective inhibition of histone deacetylase 6 Mini Rev. Med. Chem., 16 (2016),pp. 1175-1184
|
[41] |
Sathyanarayan, A., Mashek, M.T., Mashek, D.G. ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism Cell Rep., 19 (2017),pp. 1-9
|
[42] |
Schulze, R.J., Sathyanarayan, A., Mashek, D.G. Breaking fat: the regulation and mechanisms of lipophagy Biochim. Biophys. Acta, 1862 (2017),pp. 1178-1187
|
[43] |
Singh, R., Kaushik, S., Wang, Y. et al. Autophagy regulates lipid metabolism Nature, 458 (2009),pp. 1131-1135
|
[44] |
Spandl, J., Lohmann, D., Kuerschner, L. et al. Ancient ubiquitous protein 1 (AUP1) localizes to lipid droplets and binds the E2 ubiquitin conjugase G2 (Ube2g2) via its G2 binding region J. Biol. Chem., 286 (2011),pp. 5599-5606
|
[45] |
Tsai, T.H., Chen, E., Li, L. et al. The constitutive lipid droplet protein PLIN2 regulates autophagy in liver Autophagy, 13 (2017),pp. 1130-1144
|
[46] |
Valenzuela-Fernandez, A., Cabrero, J.R., Serrador, J.M. et al. HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions Trends Cell Biol., 18 (2008),pp. 291-297
|
[47] |
Velazquez, A.P., Graef, M. Autophagy regulation depends on ER homeostasis controlled by lipid droplets Autophagy, 12 (2016),pp. 1409-1410
|
[48] |
Xiong, Y., Zhao, K., Wu, J. et al. Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 4604-4609
|
[49] |
Yan, J., Seibenhener, M.L., Calderilla-Barbosa, L. et al. SQSTM1/p62 interacts with HDAC6 and regulates deacetylase activity PLoS One, 8 (2013)
|
[50] |
Yan, Y., Wang, H., Chen, H. et al. J. Genet. Genomics, 42 (2015),pp. 487-494
|
[51] |
Yan, Y., Wang, H., Hu, M. et al. Dev. Cell, 43 (2017),pp. 99-111
|
[52] |
Zhang, J., Zamani, M., Thiele, C. et al. AUP1 (ancient ubiquitous protein 1) is a key determinant of hepatic very-low-density lipoprotein assembly and secretion Arterioscler. Thromb. Vasc. Biol., 37 (2017),pp. 633-642
|
[53] |
Zhang, X., Yuan, Z., Zhang, Y. et al. HDAC6 modulates cell motility by altering the acetylation level of cortactin Mol. Cell, 27 (2007),pp. 197-213
|
[54] |
Zhang, Y., Yan, L., Zhou, Z. et al. Cell, 136 (2009),pp. 308-321
|