5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 4
Apr.  2019
Turn off MathJax
Article Contents

Understanding the importance of autophagy in human diseases using Drosophila

doi: 10.1016/j.jgg.2019.03.007
More Information
  • Corresponding author: E-mail address: szmrt@elte.hu (Gábor Juhász)
  • Received Date: 2018-11-20
  • Accepted Date: 2019-03-06
  • Rev Recd Date: 2019-03-05
  • Available Online: 2019-04-23
  • Publish Date: 2019-04-20
  • Autophagy is a lysosome-dependent intracellular degradation pathway that has been implicated in the pathogenesis of various human diseases, either positively or negatively impacting disease outcomes depending on the specific context. The majority of medical conditions including cancer, neurodegenerative diseases, infections and immune system disorders and inflammatory bowel disease could probably benefit from therapeutic modulation of the autophagy machinery. Drosophila represents an excellent model animal to study disease mechanisms thanks to its sophisticated genetic toolkit, and the conservation of human disease genes and autophagic processes. Here, we provide an overview of the various autophagy pathways observed both in flies and human cells (macroautophagy, microautophagy and chaperone-mediated autophagy), and discuss Drosophila models of the above-mentioned diseases where fly research has already helped to understand how defects in autophagy genes and pathways contribute to the relevant pathomechanisms.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Abbott, L.A., Natzle, J.E. Mech. Dev., 37 (1992),pp. 43-56
    [2]
    Agrawal, N., Joshi, S., Kango, M. et al. Dev. Biol., 169 (1995),pp. 387-398
    [3]
    Ali, S.N., Dayarathna, T.K., Ali, A.N. et al. Dis. Model. Mech. (2018)
    [4]
    Anderson, C.A., Boucher, G., Lees, C.W. et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47 Nat. Genet., 43 (2011),pp. 246-252
    [5]
    Aron, R., Pellegrini, P., Green, E.W. et al. Deubiquitinase usp12 functions noncatalytically to induce autophagy and confer neuroprotection in models of huntington's disease Nat. Commun., 9 (2018),p. 3191
    [6]
    Asano, J., Sato, T., Ichinose, S. et al. Intrinsic autophagy is required for the maintenance of intestinal stem cells and for irradiation-induced intestinal regeneration Cell Rep., 20 (2017),pp. 1050-1060
    [7]
    Bardai, F.H., Wang, L., Mutreja, Y. et al. J. Neurosci., 38 (2018),pp. 108-119
    [8]
    Baxt, L.A., Xavier, R.J. Role of autophagy in the maintenance of intestinal homeostasis Gastroenterology, 149 (2015),pp. 553-562
    [9]
    Beardsmore, C.S., Godfrey, S., Silverman, M. Forced expiratory flow-volume curves in infants and young children Eur. Respir. J. Suppl., 4 (1989),pp. 154S-159S
    [10]
    Bhattacharjee, A., Hasanain, M., Kathuria, M. et al. Ormeloxifene-induced unfolded protein response contributes to autophagy-associated apoptosis via disruption of akt/mtor and activation of jnk Sci. Rep., 8 (2018),p. 2303
    [11]
    Bilder, D., Li, M., Perrimon, N. Science, 289 (2000),pp. 113-116
    [12]
    Bilder, D., Perrimon, N. Localization of apical epithelial determinants by the basolateral pdz protein scribble Nature, 403 (2000),pp. 676-680
    [13]
    Bilen, J., Bonini, N.M. PLoS Genet., 3 (2007),pp. 1950-1964
    [14]
    Billes, V., Kovacs, T., Hotzi, B. et al. J. Huntingtons Dis., 5 (2016),pp. 133-147
    [15]
    Boland, B., Kumar, A., Lee, S. et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in alzheimer's disease J. Neurosci., 28 (2008),pp. 6926-6937
    [16]
    Boya, P., Codogno, P., Rodriguez-Muela, N. Autophagy in stem cells: repair, remodelling and metabolic reprogramming Development, 145 (2018)
    [17]
    Brumby, A.M., Richardson, H.E. EMBO J., 22 (2003),pp. 5769-5779
    [18]
    Buchon, N., Silverman, N., Cherry, S. Nat. Rev. Immunol., 14 (2014),pp. 796-810
    [19]
    Butterworth, F.M., Forrest, E.C. Tissue Cell, 16 (1984),pp. 237-250
    [20]
    Buttner, S., Broeskamp, F., Sommer, C. et al. Spermidine protects against alpha-synuclein neurotoxicity Cell Cycle, 13 (2014),pp. 3903-3908
    [21]
    Carra, S., Boncoraglio, A., Kanon, B. et al. J. Biol. Chem., 285 (2010),pp. 37811-37822
    [22]
    Chang, S., Bray, S.M., Li, Z. et al. Nat. Chem. Biol., 4 (2008),pp. 256-263
    [23]
    Chen, X., He, Y., Lu, F. Autophagy in stem cell biology: a perspective on stem cell self-renewal and differentiation Stem Cells Int., 2018 (2018),p. 9131397
    [24]
    Chu, C.T. Mechanisms of selective autophagy and mitophagy: implications for neurodegenerative diseases Neurobiol. Dis., 122 (2019),pp. 23-34
    [25]
    Cornelissen, T., Vilain, S., Vints, K. et al. eLife, 7 (2018)
    [26]
    Cuervo, A.M., Stefanis, L., Fredenburg, R. et al. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy Science, 305 (2004),pp. 1292-1295
    [27]
    Cuervo, A.M., Wong, E. Chaperone-mediated autophagy: roles in disease and aging Cell Res., 24 (2014),pp. 92-104
    [28]
    Csizmadia, T., Lorincz, P., Hegedus, K. et al. J. Cell Biol., 217 (2018),pp. 361-374
    [29]
    de Castro, I.P., Costa, A.C., Celardo, I. et al. Cell Death Dis., 4 (2013),p. e873
    [30]
    del Cano-Espinel, M., Acebes, J.R., Sanchez, D. et al. Lazarillo-related lipocalins confer long-term protection against type i spinocerebellar ataxia degeneration contributing to optimize selective autophagy Mol. Neurodegener, 10 (2015),p. 11
    [31]
    Drew, L. An age-old story of dementia Nature, 559 (2018),pp. S2-S3
    [32]
    Enomoto, M., Vaughen, J., Igaki, T. Non-autonomous overgrowth by oncogenic niche cells: cellular cooperation and competition in tumorigenesis Cancer Sci., 106 (2015),pp. 1651-1658
    [33]
    Feany, M.B., Bender, W.W. Nature, 404 (2000),pp. 394-398
    [34]
    Ferres-Marco, D., Gutierrez-Garcia, I., Vallejo, D.M. et al. Epigenetic silencers and notch collaborate to promote malignant tumours by rb silencing Nature, 439 (2006),pp. 430-436
    [35]
    Fujikake, N., Shin, M., Shimizu, S. Association between autophagy and neurodegenerative diseases Front. Neurosci., 12 (2018),p. 255
    [36]
    Fujita, N., Huang, W., Lin, T.H. et al. eLife, 6 (2017)
    [37]
    Galluzzi, L., Bravo-San Pedro, J.M., Levine, B. et al. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles Nat. Rev. Drug Discov., 16 (2017),pp. 487-511
    [38]
    Gispert, S., Ricciardi, F., Kurz, A. et al. Parkinson phenotype in aged pink1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration PLoS One, 4 (2009),p. e5777
    [39]
    Grasso, D., Garcia, M.N., Iovanna, J.L. Autophagy in pancreatic cancer Int. J. Cell Biol., 2012 (2012),p. 760498
    [40]
    Guan, J.L., Simon, A.K., Prescott, M. et al. Autophagy in stem cells Autophagy, 9 (2013),pp. 830-849
    [41]
    Hampe, J., Franke, A., Rosenstiel, P. et al. A genome-wide association scan of nonsynonymous snps identifies a susceptibility variant for crohn disease in atg16l1 Nat. Genet., 39 (2007),pp. 207-211
    [42]
    Hanahan, D., Weinberg, R.A. Hallmarks of cancer: the next generation Cell, 144 (2011),pp. 646-674
    [43]
    Hara, T., Nakamura, K., Matsui, M. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice Nature, 441 (2006),pp. 885-889
    [44]
    Harris, R.E., Pargett, M., Sutcliffe, C. et al. Brat promotes stem cell differentiation via control of a bistable switch that restricts BMP signaling Dev. Cell, 20 (2011),pp. 72-83
    [45]
    Hegedus, K., Takats, S., Boda, A. et al. The ccz1-Mon1-rab7 module and rab 5 control distinct steps of autophagy Mol. Biol. Cell, 27 (2016),pp. 3132-3142
    [46]
    Huttenhower, C., Kostic, A.D., Xavier, R.J. Inflammatory bowel disease as a model for translating the microbiome Immunity, 40 (2014),pp. 843-854
    [47]
    Issa, A.R., Sun, J., Petitgas, C. et al. Autophagy, 14 (2018),pp. 1898-1910
    [48]
    Jain, A., Rusten, T.E., Katheder, N. et al. J. Biol. Chem., 290 (2015),pp. 14945-14962
    [49]
    Jiang, H., Edgar, B.A. Curr. Opin. Genet. Dev., 22 (2012),pp. 354-360
    [50]
    Jie, X.X., Zhang, X.Y., Xu, C.J. Epithelial-to-mesenchymal transition, circulating tumor cells and cancer metastasis: mechanisms and clinical applications Oncotarget, 8 (2017),pp. 81558-81571
    [51]
    Jin, Z., Kirilly, D., Weng, C. et al. Cell Stem Cell, 2 (2008),pp. 39-49
    [52]
    Johansen, T., Lamark, T. Selective autophagy mediated by autophagic adapter proteins Autophagy, 7 (2011),pp. 279-296
    [53]
    Juhasz, G., Erdi, B., Sass, M. et al. Genes Dev., 21 (2007),pp. 3061-3066
    [54]
    Katheder, N.S., Khezri, R., O'Farrell, F. et al. Microenvironmental autophagy promotes tumour growth Nature, 541 (2017),pp. 417-420
    [55]
    Kim, M., Ho, A., Lee, J.H. Autophagy and human neurodegenerative diseases-a fly's perspective Int. J. Mol. Sci., 18 (2017)
    [56]
    Kim, M., Park, H.L., Park, H.W. et al. Autophagy, 9 (2013),pp. 1201-1213
    [57]
    Kim, M., Sandford, E., Gatica, D. et al. eLife, 5 (2016)
    [58]
    Klionsky, D.J., Cregg, J.M., , Emr, S.D. et al. A unified nomenclature for yeast autophagy-related genes Dev. Cell, 5 (2003),pp. 539-545
    [59]
    Komatsu, M., Waguri, S., Chiba, T. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice Nature, 441 (2006),pp. 880-884
    [60]
    Komatsu, M., Wang, Q.J., Holstein, G.R. et al. Essential role for autophagy protein atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration Proc. Natl. Acad. Sci. U. S. A., 104 (2007),pp. 14489-14494
    [61]
    Korzelius, J., Naumann, S.K., Loza-Coll, M.A. et al. EMBO J., 33 (2014),pp. 2967-2982
    [62]
    Kriegenburg, F., Ungermann, C., Reggiori, F. Coordination of autophagosome-lysosome fusion by atg8 family members Curr. Biol., 28 (2018),pp. R512-R518
    [63]
    Lavoie, C.A., Ohlstein, B., McKearin, D.M. Localization and function of bam protein require the benign gonial cell neoplasm gene product Dev. Biol., 212 (1999),pp. 405-413
    [64]
    Lee, J.J., Sanchez-Martinez, A., Zarate, A.M. et al. J. Cell Biol., 217 (2018),pp. 1613-1622
    [65]
    Li, H., Jasper, H. Gastrointestinal stem cells in health and disease: from flies to humans Dis. Model Mech., 9 (2016),pp. 487-499
    [66]
    Li, H., Ruberu, K., Munoz, S.S. et al. Apolipoprotein d modulates amyloid pathology in app/ps1 alzheimer's disease mice Neurobiol. Aging, 36 (2015),pp. 1820-1833
    [67]
    Ling, D., Salvaterra, P.M. Acta Neuropathol., 121 (2011),pp. 183-191
    [68]
    Ling, D., Song, H.J., Garza, D. et al. PLoS One, 4 (2009),p. e4201
    [69]
    Liu, M., Lim, T.M., Cai, Y. Sci. Signal., 3 (2010),p. ra57
    [70]
    Liu, Y., Gordesky-Gold, B., Leney-Greene, M. et al. Cell Host Microbe, 24 (2018)
    [71]
    Lorincz, P., Mauvezin, C., Juhasz, G. Cells, 6 (2017),p. 22
    [72]
    Lorincz, P., Toth, S., Benko, P. et al. Rab2 promotes autophagic and endocytic lysosomal degradation J. Cell Biol., 216 (2017),pp. 1937-1947
    [73]
    Man, S.M. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis Nat. Rev. Gastroenterol. Hepatol., 15 (2018),pp. 721-737
    [74]
    Manent, J., Banerjee, S., de Matos Simoes, R. et al. Autophagy suppresses ras-driven epithelial tumourigenesis by limiting the accumulation of reactive oxygen species Oncogene, 36 (2017),pp. 5576-5592
    [75]
    Markstein, M., Dettorre, S., Cho, J. et al. Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. 4530-4535
    [76]
    Mathew, R., Karantza-Wadsworth, V., White, E. Role of autophagy in cancer Nat. Rev. Cancer, 7 (2007),pp. 961-967
    [77]
    Mauvezin, C., Ayala, C., Braden, C.R. et al. Methods, 68 (2014),pp. 134-139
    [78]
    McGovern, D.P., Kugathasan, S., Cho, J.H. Genetics of inflammatory bowel diseases Gastroenterology, 149 (2015)
    [79]
    McKearin, D., Ohlstein, B. A role for the drosophila bag-of-marbles protein in the differentiation of cystoblasts from germline stem cells Development, 121 (1995),pp. 2937-2947
    [80]
    Mizushima, N., Levine, B. Autophagy in mammalian development and differentiation Nat. Cell Biol., 12 (2010),pp. 823-830
    [81]
    Moretti, J., Roy, S., Bozec, D. et al. Sting senses microbial viability to orchestrate stress-mediated autophagy of the endoplasmic reticulum Cell, 171 (2017),pp. 809-823. e813
    [82]
    Mowers, E.E., Sharifi, M.N., Macleod, K.F. Functions of autophagy in the tumor microenvironment and cancer metastasis FEBS J., 285 (2018),pp. 1751-1766
    [83]
    Mukherjee, A., Patel, B., Koga, H. et al. Autophagy, 12 (2016),pp. 1984-1999
    [84]
    Mulakkal, N.C., Nagy, P., Takats, S. et al. BioMed Res. Int., 2014 (2014),p. 273473
    [85]
    Murthy, A., Li, Y., Peng, I. et al. Nature, 506 (2014),pp. 456-462
    [86]
    Nagy, P., Kovacs, L., Sandor, G.O. et al. Dis. Model Mech., 9 (2016),pp. 501-512
    [87]
    Nagy, P., Sandor, G.O., Juhasz, G. Sci. Rep., 8 (2018),p. 4644
    [88]
    Nagy, P., Szatmari, Z., Sandor, G.O. et al. Development, 144 (2017),pp. 3990-4001
    [89]
    Nagy, P., Varga, A., Kovacs, A.L. et al. Methods, 75 (2015),pp. 151-161
    [90]
    Nagy, P., Varga, A., Pircs, K. et al. PLoS Genet., 9 (2013),p. e1003664
    [91]
    Nakamoto, M., Moy, R.H., Xu, J. et al. Immunity, 36 (2012),pp. 658-667
    [92]
    Napoletano, F., Occhi, S., Calamita, P. et al. EMBO J., 30 (2011),pp. 945-958
    [93]
    Nezis, I.P., Simonsen, A., Sagona, A.P. et al. J. Cell Biol., 180 (2008),pp. 1065-1071
    [94]
    Nisoli, I., Chauvin, J.P., Napoletano, F. et al. Neurodegeneration by polyglutamine atrophin is not rescued by induction of autophagy Cell Death Differ., 17 (2010),pp. 1577-1587
    [95]
    O'Farrell, F., Lobert, V.H., Sneeggen, M. et al. Class iii phosphatidylinositol-3-oh kinase controls epithelial integrity through endosomal lkb1 regulation Nat. Cell Biol., 19 (2017),pp. 1412-1423
    [96]
    Ochaba, J., Lukacsovich, T., Csikos, G. et al. Potential function for the huntingtin protein as a scaffold for selective autophagy Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. 16889-16894
    [97]
    Palandri, A., Martin, E., Russi, M. et al. Dis. Model Mech., 11 (2018)
    [98]
    Palikaras, K., Lionaki, E., Tavernarakis, N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology Nat. Cell Biol., 20 (2018),pp. 1013-1022
    [99]
    Pandey, U.B., Nie, Z., Batlevi, Y. et al. Hdac6 rescues neurodegeneration and provides an essential link between autophagy and the ups Nature, 447 (2007),pp. 859-863
    [100]
    Papp, D., Kovacs, T., Billes, V. et al. Auten-67, an autophagy-enhancing drug candidate with potent antiaging and neuroprotective effects Autophagy, 12 (2016),pp. 273-286
    [101]
    Perez, E., Das, G., Bergmann, A. et al. Autophagy regulates tissue overgrowth in a context-dependent manner Oncogene, 34 (2015),pp. 3369-3376
    [102]
    Perez, F.A., Palmiter, R.D. Parkin-deficient mice are not a robust model of parkinsonism Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 2174-2179
    [103]
    Perrimon, N. Dev. Biol., 127 (1988),pp. 392-407
    [104]
    Pircs, K., Nagy, P., Varga, A. et al. PLoS One, 7 (2012)
    [105]
    Poon, C.L.C., Brumby, A.M., Richardson, H.E. Int. J. Mol. Sci., 19 (2018)
    [106]
    Qian, M., Fang, X., Wang, X. Autophagy and inflammation Clin. Transl. Med., 6 (2017),p. 24
    [107]
    Ravikumar, B., Vacher, C., Berger, Z. et al. Inhibition of mtor induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of huntington disease Nat. Genet., 36 (2004),pp. 585-595
    [108]
    Ray, A., Speese, S.D., Logan, M.A. J. Neurosci., 37 (2017),pp. 11881-11893
    [109]
    Reiter, L.T., Potocki, L., Chien, S. et al. Genome Res., 11 (2001),pp. 1114-1125
    [110]
    Revuelta, M., Matheu, A. Autophagy in stem cell aging Aging Cell, 16 (2017),pp. 912-915
    [111]
    Richardson, H.E., Portela, M. BioMed Res. Int., 2018 (2018),p. 4258387
    [112]
    Rodolfo, C., Di Bartolomeo, S., Cecconi, F. Autophagy in stem and progenitor cells Cell. Mol. Life Sci., 73 (2016),pp. 475-496
    [113]
    Rousseaux, M.W.C., Vazquez-Velez, G.E., Al-Ramahi, I. et al. A druggable genome screen identifies modifiers of alpha-synuclein levels via a tiered cross-species validation approach J. Neurosci., 38 (2018),pp. 9286-9301
    [114]
    Rui, Y.N., Xu, Z., Patel, B. et al. Huntingtin functions as a scaffold for selective macroautophagy Nat. Cell Biol., 17 (2015),pp. 262-275
    [115]
    Rusten, T.E., Vaccari, T., Lindmo, K. et al. Escrts and fab 1 regulate distinct steps of autophagy Curr. Biol., 17 (2007),pp. 1817-1825
    [116]
    Saitoh, Y., Fujikake, N., Okamoto, Y. et al. P62 plays a protective role in the autophagic degradation of polyglutamine protein oligomers in polyglutamine disease model flies J. Biol. Chem., 290 (2015),pp. 1442-1453
    [117]
    Sansone, C.L., Cohen, J., Yasunaga, A. et al. Cell Host Microbe, 18 (2015),pp. 571-581
    [118]
    Sarkar, S., Krishna, G., Imarisio, S. et al. A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin Hum. Mol. Genet., 17 (2008),pp. 170-178
    [119]
    Seguin, A., Monnier, V., Palandri, A. et al. Oxid. Med. Cell Longev., 2015 (2015),p. 565140
    [120]
    Senturk, M., Bellen, H.J. Genetic strategies to tackle neurological diseases in fruit flies Curr. Opin. Neurobiol., 50 (2018),pp. 24-32
    [121]
    Seong, E., Insolera, R., Dulovic, M. et al. Mutations in vps13d lead to a new recessive ataxia with spasticity and mitochondrial defects Ann. Neurol., 83 (2018),pp. 1075-1088
    [122]
    Sharif, T., Martell, E., Dai, C. et al. Autophagic homeostasis is required for the pluripotency of cancer stem cells Autophagy, 13 (2017),pp. 264-284
    [123]
    Shen, R., Weng, C., Yu, J. et al. Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 11623-11628
    [124]
    Simonsen, A., Cumming, R.C., Brech, A. et al. Autophagy, 4 (2008),pp. 176-184
    [125]
    Sinka, R., Gillingham, A.K., Kondylis, V. et al. Golgi coiled-coil proteins contain multiple binding sites for rab family g proteins J. Cell Biol., 183 (2008),pp. 607-615
    [126]
    Sonoshita, M., Cagan, R.L. Curr. Top. Dev. Biol., 121 (2017),pp. 287-309
    [127]
    Stoker, T.B., Torsney, K.M., Barker, R.A. Emerging treatment approaches for Parkinson's disease Front. Neurosci., 12 (2018),p. 693
    [128]
    Stoyas, C.A., La Spada, A.R. The cag-polyglutamine repeat diseases: a clinical, molecular, genetic, and pathophysiologic nosology Handb. Clin. Neurol., 147 (2018),pp. 143-170
    [129]
    Strange, K. Drug discovery in fish, flies, and worms ILAR J., 57 (2016),pp. 133-143
    [130]
    Sui, X., Kong, N., Ye, L. et al. P38 and jnk mapk pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents Cancer Lett., 344 (2014),pp. 174-179
    [131]
    Takats, S., Glatz, G., Szenci, G. et al. Non-canonical role of the snare protein ykt6 in autophagosome-lysosome fusion PLoS Genet., 14 (2018),p. e1007359
    [132]
    Takats, S., Nagy, P., Varga, A. et al. J. Cell Biol., 201 (2013),pp. 531-539
    [133]
    Takats, S., Pircs, K., Nagy, P. et al. Mol. Biol. Cell, 25 (2014),pp. 1338-1354
    [134]
    Takeuchi, T., Nagai, Y. Protein misfolding and aggregation as a therapeutic target for polyglutamine diseases Brain Sci., 7 (2017)
    [135]
    Tekirdag, K., Cuervo, A.M. Chaperone-mediated autophagy and endosomal microautophagy: joint by a chaperone J. Biol. Chem., 293 (2018),pp. 5414-5424
    [136]
    Thachil, E., Hugot, J.P., Arbeille, B. et al. Abnormal activation of autophagy-induced crinophagy in paneth cells from patients with crohn's disease Gastroenterology, 142 (2012),pp. 1097-1099.e4
    [137]
    Uhlirova, M., Bohmann, D. EMBO J., 25 (2006),pp. 5294-5304
    [138]
    Underwood, B.R., Imarisio, S., Fleming, A. et al. Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease Hum. Mol. Genet., 19 (2010),pp. 3413-3429
    [139]
    Uytterhoeven, V., Lauwers, E., Maes, I. et al. Hsc70-4 deforms membranes to promote synaptic protein turnover by endosomal microautophagy Neuron, 88 (2015),pp. 735-748
    [140]
    Varga, K., Nagy, P., Arsikin Csordas, K. et al. Sci. Rep., 6 (2016),p. 34641
    [141]
    Venkatachalam, K., Long, A.A., Elsaesser, R. et al. Cell, 135 (2008),pp. 838-851
    [142]
    Von, G. Z. Zellforsch. Mikrosk. Anat., 61 (1963),pp. 56-95
    [143]
    Wang, L., Hagemann, T.L., Messing, A. et al. J. Neurosci., 36 (2016),pp. 1445-1455
    [144]
    Wang, T., Lao, U., Edgar, B.A. J. Cell Biol., 186 (2009),pp. 703-711
    [145]
    Wang, Y.C., Lee, C.M., Lee, L.C. et al. Mitochondrial dysfunction and oxidative stress contribute to the pathogenesis of spinocerebellar ataxia type 12 (sca12) J. Biol. Chem., 286 (2011),pp. 21742-21754
    [146]
    Xie, T., Spradling, A.C. Science, 290 (2000),pp. 328-330
    [147]
    Yang, Z., Goronzy, J.J., Weyand, C.M. Autophagy in autoimmune disease J. Mol. Med. (Berl.), 93 (2015),pp. 707-717
    [148]
    Yoon, W.H., Sandoval, H., Nagarkar-Jaiswal, S. et al. Loss of nardilysin, a mitochondrial co-chaperone for alpha-ketoglutarate dehydrogenase, promotes mtorc1 activation and neurodegeneration Neuron, 93 (2017),pp. 115-131
    [149]
    Zhang, Y.Z., Li, Y.Y. Inflammatory bowel disease: pathogenesis World J. Gastroenterol., 20 (2014),pp. 91-99
    [150]
    Zhao, S., Fortier, T.M., Baehrecke, E.H. Autophagy promotes tumor-like stem cell niche occupancy Curr. Biol., 28 (2018),pp. 3056-3064
    [151]
    Zhu, J.H., Guo, F., Shelburne, J. et al. Localization of phosphorylated erk/map kinases to mitochondria and autophagosomes in lewy body diseases Brain Pathol., 13 (2003),pp. 473-481
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (132) PDF downloads (6) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return