5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 3
Mar.  2019
Turn off MathJax
Article Contents

Control of de novo root regeneration efficiency by developmental status of Arabidopsis leaf explants

doi: 10.1016/j.jgg.2019.03.001
More Information
  • Corresponding author: E-mail address: yujie2016@sibs.ac.cn (Jie Yu); E-mail address: zhangyijing@sibs.ac.cn (Yijing Zhang); E-mail address: xulin01@sibs.ac.cn (Lin Xu)
  • Received Date: 2018-08-08
  • Accepted Date: 2019-03-04
  • Rev Recd Date: 2019-02-13
  • Available Online: 2019-03-05
  • Publish Date: 2019-03-20
  • De novo root regeneration (DNRR) has wide applications in agriculture such as those related to cutting technology. Detached Arabidopsis thaliana leaf explants can regenerate adventitious roots without added hormones. The regenerative ability is highly dependent on the developmental status of the leaf. An immature leaf has a higher regenerative ability, while a mature leaf is difficult to regenerate. Using RNA-Seq analysis, we showed that the expression levels of many genes, including those in the auxin network, changed during leaf maturation. Particularly, the expression levels of many YUCCA (YUC) genes in the auxin biosynthesis pathway are responsive to leaf maturation. Overexpression of YUC1 in the yuc-1D dominant mutant rescued the rooting defects caused by leaf maturation. In addition, YUC4 expression levels were also affected by circadian rhythms. The regenerative ability was reduced in both immature and mature mutant leaf explants from the new wuschel-related homeobox 11-3 (wox11-3) and wox12-3 mutant alleles created by the CRISPR/Cas9 method. Overall, the transcriptome and genetic data, together with the auxin concentration analysis, indicate that the ability to upregulate auxin levels upon detachment may be reduced during leaf maturation. Thus, multiple developmental and environmental signals may converge to control auxin accumulation, which affects the efficiency of the WOX11/12-mediated DNRR from leaf explants.
  • Present address: Departments of Neurosurgery, Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305–5453, USA.
  • loading
  • [1]
    Abarca, D., Pizarro, A., Hernandez, I. et al. BMC Plant Biol., 14 (2014),p. 354
    [2]
    Abu-Abied, M., Szwerdszarf, D., Mordehaev, I. et al. BMC Genomics, 15 (2014),p. 826
    [3]
    Atkinson, J.A., Rasmussen, A., Traini, R. et al. Branching out in roots: uncovering form, function, and regulation Plant Physiol., 166 (2014),pp. 538-550
    [4]
    , , de Oliveira Junkes, C.F., de Almeida, M.R., Matsuura, H.N. et al. Front. Plant Sci., 8 (2017),p. 1734
    [5]
    Bellini, C., Pacurar, D.I., Perrone, I. Adventitious roots and lateral roots: similarities and differences Annu. Rev. Plant Biol., 65 (2014),pp. 639-666
    [6]
    Birnbaum, K.D. How many ways are there to make a root? Curr. Opin. Plant Biol., 34 (2016),pp. 61-67
    [7]
    Bolger, A.M., Lohse, M., Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data Bioinformatics, 30 (2014),pp. 2114-2120
    [8]
    Chen, L., Tong, J., Xiao, L. et al. J. Exp. Bot., 67 (2016),pp. 4273-4284
    [9]
    Chen, X., Qu, Y., Sheng, L. et al. Front. Plant Sci., 5 (2014),p. 208
    [10]
    Cheng, Y., Dai, X., Zhao, Y. Genes Dev., 20 (2006),pp. 1790-1799
    [11]
    da Costa, C.T., de Almeida, M.R., Ruedell, C.M. et al. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings Front. Plant Sci., 4 (2013),p. 133
    [12]
    de Almeida, M.R., de Bastiani, D., Gaeta, M.L. et al. Plant Sci., 239 (2015),pp. 155-165
    [13]
    De Klerk, G.-J. Rooting of microcuttings: theory and practice. In Vitro Cell Dev. Biol. Plant, 38 (2002),pp. 415-422
    [14]
    De Klerk, G.-J., Van der Krieken, W., De Jong, J.C. The formation of adventitious roots: new concepts, new possibilities. In Vitro Cell. Dev. Biol. Plant, 35 (1999),pp. 189-199
    [15]
    Dobin, A., Davis, C.A., Schlesinger, F. et al. STAR: ultrafast universal RNA-seq aligner Bioinformatics, 29 (2013),pp. 15-21
    [16]
    Falasca, G., Altamura, M.M. Plant Biosyst., 137 (2003),pp. 265-274
    [17]
    Gamborg, O.L., Miller, R.A., Ojima, K. Nutrient requirements of suspension cultures of soybean root cells Exp. Cell Res., 50 (1968),pp. 151-158
    [18]
    He, C., Chen, X., Huang, H. et al. PLoS Genet., 8 (2012)
    [19]
    Hitchcock, A.E., Zimmerman, P.W. Effect of the use of growth substances on the rooting response of cuttings Contrib. Boyce Thompson Inst., 8 (1936),pp. 63-79
    [20]
    Hornitschek, P., Kohnen, M.V., Lorrain, S. et al. Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling Plant J., 71 (2012),pp. 699-711
    [21]
    Hu, X., Xu, L. Plant Physiol., 172 (2016),pp. 2363-2373
    [22]
    Leakey, R.R.B.
    [23]
    Leng, N., Dawson, J.A., Thomson, J.A. et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments Bioinformatics, 29 (2013),pp. 1035-1043
    [24]
    Li, B., Dewey, C.N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome BMC Bioinformatics, 12 (2011),p. 323
    [25]
    Liu, J., Sheng, L., Xu, Y. et al. Plant Cell, 26 (2014),pp. 1081-1093
    [26]
    Murashige, T., Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture Physiol. Plantarum, 80 (1962),pp. 662-668
    [27]
    Sanchez, M.C., Smith, A.G., Hackett, W.P. Localized expression of a proline-rich protein gene in juvenile and mature ivy petioles in relation to rooting competence Physiol. Plantarum, 93 (1995),pp. 207-216
    [28]
    Sheng, L., Hu, X., Du, Y. et al. Development, 144 (2017),pp. 3126-3133
    [29]
    Steffens, B., Rasmussen, A. The physiology of adventitious roots Plant Physiol., 170 (2016),pp. 603-617
    [30]
    Stepanova, A.N., Robertson-Hoyt, J., Yun, J. et al. Cell, 133 (2008),pp. 177-191
    [31]
    Sun, B., Chen, L., Liu, J. et al. Sci. Bull., 61 (2016),pp. 1728-1731
    [32]
    Sun, L.-J., Xie, Y., Yan, Y.-F. et al. Paper-based analytical devices for direct electrochemical detection of free IAA and SA in plant samples with the weight of several milligrams Sens. Actuators B Chem., 247 (2017),pp. 336-342
    [33]
    Sun, L.-J., Zhou, J.-J., Pan, J.-L. et al. Electrochemical mapping of indole-3-acetic acid and salicylic acid in whole pea seedlings under normal conditions and salinity Sens. Actuators B Chem., 276 (2018),pp. 543-551
    [34]
    Swamy, S.L., Puri, S., Singh, A.K. New Forest., 23 (2002),pp. 143-157
    [35]
    Tao, Y., Ferrer, J.L., Ljung, K. et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants Cell, 133 (2008),pp. 164-176
    [36]
    Thimann, K.V., Went, E.W. On the chemical nature of the rootforming hormone Proc. K. Ned. Akad. Wet. Ser. C Biol. Med. Sci., 37 (1934),pp. 456-459
    [37]
    Verstraeten, I., Schotte, S., Geelen, D. Hypocotyl adventitious root organogenesis differs from lateral root development Front. Plant Sci., 5 (2014),p. 495
    [38]
    Woo, H.-H., Hackett, W.P., Das, A. Physiol. Plantarum, 92 (1994),pp. 69-78
    [39]
    Xu, L. Curr. Opin. Plant Biol., 41 (2018),pp. 39-45
    [40]
    Xu, L., Huang, H. Genetic and epigenetic controls of plant regeneration Curr. Top. Dev. Biol., 108 (2014),pp. 1-33
    [41]
    Yan, L., Wei, S., Wu, Y. et al. Mol. Plant, 8 (2015),pp. 1820-1823
    [42]
    Zhao, Y., Christensen, S.K., Fankhauser, C. et al. A role for flavin monooxygenase-like enzymes in auxin biosynthesis Science, 291 (2001),pp. 306-309
    [43]
    Zimmerman, W., Wilcoxon, F. Several chemical growth substances which cause initiation of roots and other responses in plants Contrib. Boyce Thompson Inst., 7 (1935),pp. 209-217
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (150) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return