5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 3
Mar.  2019
Turn off MathJax
Article Contents

CPI-17-mediated contraction of vascular smooth muscle is essential for the development of hypertension in obese mice

doi: 10.1016/j.jgg.2019.02.005
More Information
  • Corresponding author: E-mail address: zhangxn@nicemice.cn (Xue-Na Zhang); E-mail address: zhums@nju.edu.cn (Min-Sheng Zhu)
  • Received Date: 2018-12-03
  • Accepted Date: 2019-02-20
  • Rev Recd Date: 2019-01-21
  • Available Online: 2019-03-15
  • Publish Date: 2019-03-20
  • Several factors have been implicated in obesity-related hypertension, but the genesis of the hypertension is largely unknown. In this study, we found a significantly upregulated expression of CPI-17 (C-kinase-potentiated protein phosphatase 1 inhibitor of 17 kDa) and protein kinase C (PKC) isoforms in the vascular smooth muscles of high-fat diet (HFD)-fed obese mice. The obese wild-type mice showed a significant elevation of blood pressure and enhanced calcium-sensitized contraction of vascular smooth muscles. However, the obese CPI-17-deficient mice showed a normotensive blood pressure, and the calcium-sensitized contraction was consistently reduced. In addition, the mutant muscle displayed an abolished responsive force to a PKC activator and a 30%–50% reduction in both the initial peak force and sustained force in response to various G protein-coupled receptor (GPCR) agonists. Our observations showed that CPI-17-mediated calcium sensitization is mediated through a GPCR/PKC/CPI-17/MLCP/RLC signaling pathway. We therefore propose that the upregulation of CPI-17-mediated calcium-sensitized vasocontraction by obesity contributes to the development of obesity-related hypertension.
  • loading
  • [1]
    Butler, T., Paul, J., Europe-Finner, N. et al. Role of serine-threonine phosphoprotein phosphatases in smooth muscle contractility Am. J. Physiol. Cell Physiol., 304 (2013),pp. C485-C504
    [2]
    Chen, C.P., Chen, X., Qiao, Y.N. et al. J. Physiol., 593 (2015),pp. 681-700
    [3]
    Collins, S., Martin, T.L., Surwit, R.S. et al. Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics Physiol. Behav., 81 (2004),pp. 243-248
    [4]
    Crowley, S.D., Gurley, S.B., Oliverio, M.I. et al. Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system J. Clin. Investig., 115 (2005),pp. 1092-1099
    [5]
    Das Evcimen, N., King, G.L. The role of protein kinase C activation and the vascular complications of diabetes Pharmacol. Res., 55 (2007),pp. 498-510
    [6]
    Dimopoulos, G.J., Semba, S., Kitazawa, K. et al. Circ. Res., 100 (2007),pp. 121-129
    [7]
    Dinh Cat, A.N., Friederich-Persson, M., White, A. et al. Adipocytes, aldosterone and obesity-related hypertension J. Mol. Endocrinol., 57 (2016),pp. F7-F21
    [8]
    Eto, M. Regulation of cellular protein phosphatase-1 (PP1) by phosphorylation of the CPI-17 family, C-kinase-activated PP1 inhibitors J. Biol. Chem., 284 (2009),pp. 35273-35277
    [9]
    Eto, M., Brautigan, D.L. Endogenous inhibitor proteins that connect Ser/Thr kinases and phosphatases in cell signaling IUBMB Life, 64 (2012),pp. 732-739
    [10]
    Eto, M., Kitazawa, T., Matsuzawa, F. et al. Phosphorylation-induced conformational switching of CPI-17 produces a potent myosin phosphatase inhibitor Structure, 15 (2007),pp. 1591-1602
    [11]
    Eto, M., Ohmori, T., Suzuki, M. et al. A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization J. Biochem., 118 (1995),pp. 1104-1107
    [12]
    Grassie, M.E., Moffat, L.D., Walsh, M.P. et al. The myosin phosphatase targeting protein (MYPT) family: a regulated mechanism for achieving substrate specificity of the catalytic subunit of protein phosphatase type 1δ Arch. Biochem. Biophys., 510 (2011),pp. 147-159
    [13]
    Hall, J.E. The kidney, hypertension, and obesity Hypertension, 41 (2003),pp. 625-633
    [14]
    Hall, J.E., Hildebrandt, D.A., Kuo, J. Obesity hypertension: role of leptin and sympathetic nervous system Am. J. Hypertens., 14 (2001),pp. 103S-115S
    [15]
    He, W.Q., Peng, Y.J., Zhang, W.C. et al. Myosin light chain kinase is central to smooth muscle contraction and required for gastrointestinal motility in mice Gastroenterology, 135 (2008),pp. 610-620
    [16]
    He, W.Q., Qiao, Y.N., Peng, Y.J. et al. Altered contractile phenotypes of intestinal smooth muscle in mice deficient in myosin phosphatase target subunit 1 Gastroenterology, 144 (2013),pp. 1456-1465
    [17]
    He, W.Q., Qiao, Y.N., Zhang, C.H. et al. Role of myosin light chain kinase in regulation of basal blood pressure and maintenance of salt-induced hypertension Am. J. Physiol. Heart Circ. Physiol., 301 (2011),pp. H584-H591
    [18]
    Himpens, B., Kitazawa, T., Somlyo, A.P. Pflügers Archiv, 417 (1990),pp. 21-28
    [19]
    Kamm, K.E., Stull, J.T. The funtion of myosin and myosin light chain kinase phosphorylation in smooth muscle Annu. Rev. Pharmacol. Toxicol., 25 (1985),pp. 593-620
    [20]
    Kawarazaki, W., Fujita, T. The role of aldosterone in obesity-related hypertension Am. J. Hypertens., 29 (2016),pp. 415-423
    [21]
    Kim, J.I. High fat diet confers vascular hyper-contractility against angiotensin II through upregulation of MLCK and CPI-17 Korean J. Physiol. Pharmacol., 21 (2017),pp. 99-106
    [22]
    King, R.J., Ajjan, R.A. Vascular risk in obesity: facts, misconceptions and the unknown Diabetes Vasc. Dis. Res., 14 (2016),pp. 2-13
    [23]
    Kitazawa, T. Biochem. Biophys. Res. Commun., 401 (2010),pp. 75-78
    [24]
    Kitazawa, T., Eto, M., Woodsome, T.P. et al. Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility J. Biol. Chem., 275 (2000),pp. 9897-9900
    [25]
    Kitazawa, T., Gaylinn, B.D., Denney, G.H. et al. J. Biol. Chem., 266 (1991),pp. 1708-1715
    [26]
    Kitazawa, T., Masuo, M., Somlyo, A.P. G protein-mediated inhibition of myosin light-chain phosphatase in vascular smooth muscle Proc. Natl. Acad. Sci. U. S. A., 88 (1991),pp. 9307-9310
    [27]
    Landsberg, L., Aronne, L.J., Beilin, L.J. et al. Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment. A position paper of the Obesity Society and the American Society of Hypertension J. Clin. Hypertens., 15 (2013),pp. 14-33
    [28]
    Matsumura, F., Hartshorne, D.J. Myosin phosphatase target subunit: many roles in cell function Biochem. Biophys. Res. Commun., 369 (2008),pp. 149-156
    [29]
    Mendelsohn, M.E. In hypertension, the kidney is not always the heart of the matter J. Clin. Investig., 115 (2005),pp. 840-844
    [30]
    Montani, J.P., Antic, V., Yang, Z. et al. Pathways from obesity to hypertension: from the perspective of a vicious triangle Int. J. Obes., 26 (2002),pp. S28-S38
    [31]
    Must, A., Spadano, J., Coakley, E.H. et al. The disease burden associated with overweight and obesity J. Am. Med. Assoc., 282 (1999),pp. 1523-1529
    [32]
    Pang, H., Guo, Z., Su, W. et al. RhoA-Rho kinase pathway mediates thrombin- and U-46619-induced phosphorylation of a myosin phosphatase inhibitor, CPI-17, in vascular smooth muscle cells Am. J. Physiol. Cell Physiol., 289 (2005),pp. C352-C360
    [33]
    Qiao, Y.N., He, W.Q., Chen, C.P. et al. Myosin phosphatase target subunit 1 (MYPT1) regulates the contraction and relaxation of vascular smooth muscle and maintains blood pressure J. Biol. Chem., 289 (2014),pp. 22512-22523
    [34]
    Rahmouni, K., Correia, M.L.G., Haynes, W.G. et al. Obesity-associated hypertension: new insights into mechanisms Hypertension, 45 (2005),pp. 9-14
    [35]
    Ran, F.A., Hsu, P.D., Lin, C.Y. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity Cell, 154 (2013),pp. 1380-1389
    [36]
    Senba, S., Eto, M., Yazawa, M. Identification of trimeric myosin phosphatase (PP1M) as a target for a novel PKC-potentiated protein phosphatase-1 inhibitory protein (CPI17) in porcine aorta smooth muscle J. Biochem., 125 (1999),pp. 354-362
    [37]
    Somlyo, A.P., Somlyo, A.V. Signal transduction and regulation in smooth muscle Nature, 372 (1994),pp. 231-236
    [38]
    Somlyo, A.P., Somlyo, A.V. Physiol. Rev., 83 (2003),pp. 1325-1358
    [39]
    Taylor, D.A., Stull, J.T. Calcium dependence of myosin light chain phosphorylation in smooth muscle cells J. Biol. Chem., 263 (1988),pp. 14456-14462
    [40]
    Tsai, M.H., Chang, A.N., Huang, J. et al. Constitutive phosphorylation of myosin phosphatase targeting subunit-1 in smooth muscle J. Physiol., 592 (2014),pp. 3031-3051
    [41]
    Wang, C.Y., Liao, J.K. A mouse model of diet-induced obesity and insulin resistance Methods Mol. Biol., 821 (2012),pp. 421-433
    [42]
    Whitesall, S.E., Hoff, J.B., Vollmer, A.P. et al. Comparison of simultaneous measurement of mouse systolic arterial blood pressure by radiotelemetry and tail-cuff methods Am. J. Physiol. Heart Circ. Physiol., 286 (2004),pp. H2408-H2415
    [43]
    Woodsome, T.P., Eto, M., Everett, A. et al. J. Physiol., 535 (2001),pp. 553-564
    [44]
    Xie, Z.W., Su, W., Guo, Z.H. et al. Up-regulation of CPI-17 phosphorylation in diabetic vasculature and high glucose cultured vascular smooth muscle cells Cardiovasc. Res., 69 (2006),pp. 491-501
    [45]
    Yang, Q.H., Fujii, W., Kaji, N. et al. The essential role of phospho-T38 CPI-17 in the maintenance of physiological blood pressure using genetically modified mice FASEB J., 32 (2018),pp. 2095-2109
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (105) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return