[1] |
Cao, J., Wu, L., Zhang, S.M. et al. An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting Nucleic Acids Res., 44 (2016),p. e149
|
[2] |
Caplan, A.L., Parent, B., Shen, M. et al. No time to waste—the ethical challenges created by CRISPR EMBO Rep., 16 (2015),pp. 1421-1426
|
[3] |
Chen, Y., Liu, X., Zhang, Y. et al. A self-restricted CRISPR system to reduce off-target effects Mol. Ther., 24 (2016),pp. 1508-1510
|
[4] |
Chin, J.W. Expanding and reprogramming the genetic code Nature, 550 (2017),pp. 53-60
|
[5] |
Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
|
[6] |
Cradick, T.J., Antico, C.J., Bao, G. High-throughput cellular screening of engineered nuclease activity using the single-strand annealing assay and luciferase reporter Methods Mol. Biol., 1114 (2014),pp. 339-352
|
[7] |
Doudna, J.A., Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9 Science, 346 (2014),p. 1258096
|
[8] |
Fu, Y., Foden, J.A., Khayter, C. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells Nat. Biotechnol., 31 (2013),pp. 822-826
|
[9] |
Fu, Y., Sander, J.D., Reyon, D. et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs Nat. Biotechnol., 32 (2014),pp. 279-284
|
[10] |
Guilinger, J.P., Thompson, D.B., Liu, D.R. Nat. Biotechnol., 32 (2014),pp. 577-582
|
[11] |
Hemphill, J., Borchardt, E.K., Brown, K. et al. Optical control of CRISPR/Cas9 gene editing J. Am. Chem. Soc., 137 (2015),pp. 5642-5645
|
[12] |
Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. DNA targeting specificity of RNA-guided Cas9 nucleases Nat. Biotechnol., 31 (2013),pp. 827-832
|
[13] |
Kleinstiver, B.P., Pattanayak, V., Prew, M.S. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects Nature, 529 (2016),pp. 490-495
|
[14] |
Liu, J.L. Sparks of the CRISPR explosion: applications in medicine and agriculture J. Genet. Genomics, 44 (2017),pp. 413-414
|
[15] |
Mandell, D.,J., Lajoie, M. et al. Biocontainment of genetically modified organisms by synthetic protein design Nature, 518 (2015),pp. 55-60
|
[16] |
Petris, G., Casini, A., Montagna, C. et al. Hit and go CAS9 delivered through a lentiviral based self-limiting circuit Nat. Commun., 8 (2017),p. 15334
|
[17] |
Ran, F.A., Hsu, P.D., Lin, C.Y. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity Cell, 154 (2013),pp. 1380-1389
|
[18] |
Rovner, A.J., Haimovich, A.D., Katz, S.R. et al. Recoded organisms engineered to depend on synthetic amino acids Nature, 518 (2015),pp. 89-93
|
[19] |
Slaymaker, I.M., Gao, L., Zetsche, B. et al. Rationally engineered Cas9 nucleases with improved specificity Science, 351 (2016),pp. 84-88
|
[20] |
Suzuki, T., Asami, M., Patel, S.G. et al. Switchable genome editing via genetic code expansion Sci. Rep., 8 (2018),p. 10051
|
[21] |
Taning, C.N.T., Van, Eynde, B., Yu, N. et al. CRISPR/Cas9 in insects: applications, best practices and biosafety concerns J. Insect Physiol., 98 (2017),pp. 245-257
|
[22] |
Tsai, S.Q., Joung, J.K. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases Nat. Rev. Genet., 17 (2016),pp. 300-312
|
[23] |
Tsai, S.Q., Wyvekens, N., Khayter, C. et al. Nat. Biotechnol., 32 (2014),pp. 569-576
|
[24] |
Yin, H., Song, C.Q., Suresh, S. et al. Partial DNA-guided Cas9 enables genome editing with reduced off-target activity Nat. Chem. Biol., 14 (2018),pp. 311-316
|
[25] |
Zhang, Q., Xing, H.L., Wang, Z.P. et al. Plant Mol. Biol., 96 (2018),pp. 445-456
|