5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 2
Feb.  2019
Turn off MathJax
Article Contents

Distinct functions of Trio GEF domains in axon outgrowth of cerebellar granule neurons

doi: 10.1016/j.jgg.2019.02.003
More Information
  • Corresponding author: E-mail address: zhums@nju.edu.cn (Min-Sheng Zhu)
  • Received Date: 2018-10-20
  • Accepted Date: 2019-02-19
  • Rev Recd Date: 2019-01-14
  • Available Online: 2019-02-23
  • Publish Date: 2019-02-01
  • As a critical guanine nucleotide exchange factor (GEF) regulating neurite outgrowth, Trio coordinates multiple processes of cytoskeletal dynamics through activating Rac1, Cdc42 and RhoA small GTPases by two GEF domains, but the in vivo roles of these GEF domains and corresponding downstream effectors have not been determined yet. We established multiple lines of knockout mice and assessed the respective roles of Trio GEF domains and Rac1 in axon outgrowth. Knockout of total Trio in cerebellar granule neurons (CGNs) led to an impaired F-actin rearrangement of growth cone and hence a retarded neurite outgrowth. Such a retardation was reproduced by inhibition of GEF1 domain or knockdown of Cdc42 and restored apparently by introduction of active Cdc42. As Rac1 deficiency did not affect the neurite outgrowth of CGNs, we suggested that Trio GEF1-mediated Cdc42 activation was required for neurite outgrowth. We established a GEF2-knockout line with deletion of all Trio isoforms except a cerebella-specific Trio8, a short isoform of Trio without GEF2 domain, and used this line as a GEF2-deficient animal model. The GEF2-deficient CGNs had a normal neurite outgrowth but abolished Netrin-1-promoted growth, without affecting Netrin-1 induced Rac1 activation. We thus suggested that Trio GEF1-mediated Cdc42 activation rather than Rac1 activation drives the F-actin dynamics necessary for neurite outgrowth, while GEF2 functions in Netrin-1-promoted neurite elongation. Our results delineated the distinct roles of Trio GEF domains in neurite outgrowth, which is instructive to understand the pathogenesis of clinical Trio-related neurodevelopmental disorders.
  • loading
  • [1]
    Ahmed, G., Shinmyo, Y., Ohta, K. et al. Draxin inhibits axonal outgrowth through the netrin receptor DCC J. Neurosci., 31 (2011),pp. 14018-14023
    [2]
    Ba, W., van der Raadt, J., Nadif Kasri, N. Rho GTPase signaling at the synapse: implications for intellectual disability Exp. Cell Res., 319 (2013),pp. 2368-2374
    [3]
    Ba, W., Yan, Y., Reijnders, M.R. et al. TRIO loss of function is associated with mild intellectual disability and affects dendritic branching and synapse function Hum. Mol. Genet., 25 (2016),pp. 892-902
    [4]
    Bateman, J., Van Vactor, D. The Trio family of guanine-nucleotide-exchange factors: regulators of axon guidance J. Cell Sci., 114 (2001),pp. 1973-1980
    [5]
    Blangy, A., Vignal, E., Schmidt, S. et al. TrioGEF1 controls Rac- and Cdc42-dependent cell structures through the direct activation of rhoG J. Cell Sci., 113 (2000),pp. 729-739
    [6]
    Bouquier, N., Vignal, E., Charrasse, S. et al. A cell active chemical GEF inhibitor selectively targets the Trio/RhoG/Rac1 signaling pathway Chem. Biol., 16 (2009),pp. 657-666
    [7]
    Bradke, F., Dotti, C.G. The role of local actin instability in axon formation Science, 283 (1999),pp. 1931-1934
    [8]
    Briancon-Marjollet, A., Ghogha, A., Nawabi, H. et al. Trio mediates netrin-1-induced Rac1 activation in axon outgrowth and guidance Mol. Cell Biol., 28 (2008),pp. 2314-2323
    [9]
    Chelly, J., Khelfaoui, M., Francis, F. et al. Genetics and pathophysiology of mental retardation Eur. J. Hum. Genet., 14 (2006),pp. 701-713
    [10]
    Chen, L., Liao, G., Waclaw, R.R. et al. Rac1 controls the formation of midline commissures and the competency of tangential migration in ventral telencephalic neurons J. Neurosci., 27 (2007),pp. 3884-3893
    [11]
    Chrostek, A., Wu, X., Quondamatteo, F. et al. Rac1 is crucial for hair follicle integrity but is not essential for maintenance of the epidermis Mol. Cell Biol., 26 (2006),pp. 6957-6970
    [12]
    Danielian, P.S., Muccino, D., Rowitch, D.H. et al. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase Curr. Biol., 8 (1998),pp. 1323-1326
    [13]
    Debant, A., Serra-Pages, C., Seipel, K. et al. The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains Proc. Natl. Acad. Sci. U. S. A., 93 (1996),pp. 5466-5471
    [14]
    Demarco, R.S., Struckhoff, E.C., Lundquist, E.A. The Rac GTP exchange factor TIAM-1 acts with CDC-42 and the guidance receptor UNC-40/DCC in neuronal protrusion and axon guidance PLoS Genet., 8 (2012),p. e1002665
    [15]
    Dent, E.W., Gupton, S.L., Gertler, F.B. The growth cone cytoskeleton in axon outgrowth and guidance Cold Spring Harb. Perspect. Biol., 3 (2010)
    [16]
    Dickson, B.J. Rho GTPases in growth cone guidance Curr. Opin. Neurobiol., 11 (2001),pp. 103-110
    [17]
    Garvalov, B.K., Flynn, K.C., Neukirchen, D. et al. Cdc42 regulates cofilin during the establishment of neuronal polarity J. Neurosci., 27 (2007),pp. 13117-13129
    [18]
    Govek, E.E., Newey, S.E., Van Aelst, L. The role of the Rho GTPases in neuronal development Genes Dev., 19 (2005),pp. 1-49
    [19]
    Graus-Porta, D., Blaess, S., Senften, M. et al. Beta1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex Neuron, 31 (2001),pp. 367-379
    [20]
    Gu, Y., Filippi, M.D., Cancelas, J.A. et al. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases Science, 302 (2003),pp. 445-449
    [21]
    Hall, A. Rho GTPases and the actin cytoskeleton Science, 279 (1998),pp. 509-514
    [22]
    Hall, A., Lalli, G. Rho and Ras GTPases in axon growth, guidance, and branching Cold Spring Harb. Perspect. Biol., 2 (2010),p. a001818
    [23]
    Herring, B.E., Nicoll, R.A. Kalirin and Trio proteins serve critical roles in excitatory synaptic transmission and LTP Proc. Natl. Acad. Sci. U. S. A., 113 (2016),pp. 2264-2269
    [24]
    Islam, S.M., Shinmyo, Y., Okafuji, T. et al. Draxin, a repulsive guidance protein for spinal cord and forebrain commissures Science, 323 (2009),pp. 388-393
    [25]
    Jaffe, A.B., Hall, A. Rho GTPases: biochemistry and biology Annu. Rev. Cell Dev. Biol., 21 (2005),pp. 247-269
    [26]
    Katrancha, S.M., Wu, Y., Zhu, M. et al. Hum. Mol. Genet., 26 (2017),pp. 4728-4740
    [27]
    Lagenaur, C., Lemmon, V. An L1-like molecule, the 8D9 antigen, is a potent substrate for neurite extension Proc. Natl. Acad. Sci. U. S. A., 84 (1987),pp. 7753-7757
    [28]
    Lee, J.-W., Yeo, S.-G., Kang, B.-H. et al. Echovirus 30 induced neuronal cell death through TRIO-RhoA signaling activation PLoS One, 7 (2012)
    [29]
    Li, X., Gao, X., Liu, G. et al. Netrin signal transduction and the guanine nucleotide exchange factor DOCK180 in attractive signaling Nat. Neurosci., 11 (2008),pp. 28-35
    [30]
    Li, X., Saint-Cyr-Proulx, E., Aktories, K. et al. Rac1 and Cdc42 but not RhoA or Rho kinase activities are required for neurite outgrowth induced by the Netrin-1 receptor DCC (deleted in colorectal cancer) in N1E-115 neuroblastoma cells J. Biol. Chem., 277 (2002),pp. 15207-15214
    [31]
    Li, Z., Aizenman, C.D., Cline, H.T. Neuron, 33 (2002),pp. 741-750
    [32]
    Liu, P.T., Jenkins, N.A., Copeland, N.G. A highly efficient recombineering-based method for generating conditional knockout mutations Genome Res., 13 (2003),pp. 476-484
    [33]
    Luo, L. Rho GTPases in neuronal morphogenesis Nat. Rev. Neurosci., 1 (2000),pp. 173-180
    [34]
    McPherson, C.E., Eipper, B.A., Mains, R.E. Multiple novel isoforms of Trio are expressed in the developing rat brain Gene, 347 (2005),pp. 125-135
    [35]
    Nadif Kasri, N., Van Aelst, L. Rho-linked genes and neurological disorders , 455 (2008),pp. 787-797
    [36]
    Peng, Y.-J., He, W.-Q., Tang, J. et al. Trio is a key guanine nucleotide exchange factor coordinating regulation of the migration and morphogenesis of granule cells in the developing cerebellum J. Biol. Chem., 285 (2010),pp. 24834-24844
    [37]
    Pengelly, R.J., Greville-Heygate, S., Schmidt, S. et al. Mutations specific to the Rac-GEF domain of TRIO cause intellectual disability and microcephaly J. Med. Genet., 53 (2016),pp. 735-742
    [38]
    , Chauhan, B.K., Yang, C., Jaudon, F. et al. A Trio-RhoA-Shroom3 pathway is required for apical constriction and epithelial invagination Development, 138 (2011),pp. 5177-5188
    [39]
    Portales-Casamar, E., Briancon-Marjollet, A., Fromont, S. et al. Identification of novel neuronal isoforms of the Rho-GEF Trio Biol. Cell, 98 (2006),pp. 183-193
    [40]
    Rossman, K.L., Der, C.J., Sondek, J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors Nat. Rev. Mol. Cell Biol., 6 (2005),pp. 167-180
    [41]
    Sadybekov, A., Tian, C., Arnesano, C. et al. Nat. Commun., 8 (2017),p. 601
    [42]
    Shekarabi, M., Kennedy, T.E. The Netrin-1 receptor DCC promotes filopodia formation and cell spreading by activating Cdc42 and Rac1 Mol. Cell. Neurosci., 19 (2002),pp. 1-17
    [43]
    Stéphanie, P., Harry, M. Rho GTPase activation assays Curr. Protoc. Cell Biol., 38 (2008)
    [44]
    Tahirovic, S., Hellal, F., Neukirchen, D. et al. Rac1 regulates neuronal polarization through the WAVE complex J. Neurosci., 30 (2010),pp. 6930-6943
    [45]
    van Bokhoven, H. Genetic and epigenetic networks in intellectual disabilities Annu. Rev. Genet., 45 (2011),pp. 81-104
    [46]
    Zong, W., Liu, S., Wang, X. et al. Brain Res., 1608 (2015),pp. 82-90
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (95) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return