[1] |
Ahmed, G., Shinmyo, Y., Ohta, K. et al. Draxin inhibits axonal outgrowth through the netrin receptor DCC J. Neurosci., 31 (2011),pp. 14018-14023
|
[2] |
Ba, W., van der Raadt, J., Nadif Kasri, N. Rho GTPase signaling at the synapse: implications for intellectual disability Exp. Cell Res., 319 (2013),pp. 2368-2374
|
[3] |
Ba, W., Yan, Y., Reijnders, M.R. et al. TRIO loss of function is associated with mild intellectual disability and affects dendritic branching and synapse function Hum. Mol. Genet., 25 (2016),pp. 892-902
|
[4] |
Bateman, J., Van Vactor, D. The Trio family of guanine-nucleotide-exchange factors: regulators of axon guidance J. Cell Sci., 114 (2001),pp. 1973-1980
|
[5] |
Blangy, A., Vignal, E., Schmidt, S. et al. TrioGEF1 controls Rac- and Cdc42-dependent cell structures through the direct activation of rhoG J. Cell Sci., 113 (2000),pp. 729-739
|
[6] |
Bouquier, N., Vignal, E., Charrasse, S. et al. A cell active chemical GEF inhibitor selectively targets the Trio/RhoG/Rac1 signaling pathway Chem. Biol., 16 (2009),pp. 657-666
|
[7] |
Bradke, F., Dotti, C.G. The role of local actin instability in axon formation Science, 283 (1999),pp. 1931-1934
|
[8] |
Briancon-Marjollet, A., Ghogha, A., Nawabi, H. et al. Trio mediates netrin-1-induced Rac1 activation in axon outgrowth and guidance Mol. Cell Biol., 28 (2008),pp. 2314-2323
|
[9] |
Chelly, J., Khelfaoui, M., Francis, F. et al. Genetics and pathophysiology of mental retardation Eur. J. Hum. Genet., 14 (2006),pp. 701-713
|
[10] |
Chen, L., Liao, G., Waclaw, R.R. et al. Rac1 controls the formation of midline commissures and the competency of tangential migration in ventral telencephalic neurons J. Neurosci., 27 (2007),pp. 3884-3893
|
[11] |
Chrostek, A., Wu, X., Quondamatteo, F. et al. Rac1 is crucial for hair follicle integrity but is not essential for maintenance of the epidermis Mol. Cell Biol., 26 (2006),pp. 6957-6970
|
[12] |
Danielian, P.S., Muccino, D., Rowitch, D.H. et al. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase Curr. Biol., 8 (1998),pp. 1323-1326
|
[13] |
Debant, A., Serra-Pages, C., Seipel, K. et al. The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains Proc. Natl. Acad. Sci. U. S. A., 93 (1996),pp. 5466-5471
|
[14] |
Demarco, R.S., Struckhoff, E.C., Lundquist, E.A. The Rac GTP exchange factor TIAM-1 acts with CDC-42 and the guidance receptor UNC-40/DCC in neuronal protrusion and axon guidance PLoS Genet., 8 (2012),p. e1002665
|
[15] |
Dent, E.W., Gupton, S.L., Gertler, F.B. The growth cone cytoskeleton in axon outgrowth and guidance Cold Spring Harb. Perspect. Biol., 3 (2010)
|
[16] |
Dickson, B.J. Rho GTPases in growth cone guidance Curr. Opin. Neurobiol., 11 (2001),pp. 103-110
|
[17] |
Garvalov, B.K., Flynn, K.C., Neukirchen, D. et al. Cdc42 regulates cofilin during the establishment of neuronal polarity J. Neurosci., 27 (2007),pp. 13117-13129
|
[18] |
Govek, E.E., Newey, S.E., Van Aelst, L. The role of the Rho GTPases in neuronal development Genes Dev., 19 (2005),pp. 1-49
|
[19] |
Graus-Porta, D., Blaess, S., Senften, M. et al. Beta1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex Neuron, 31 (2001),pp. 367-379
|
[20] |
Gu, Y., Filippi, M.D., Cancelas, J.A. et al. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases Science, 302 (2003),pp. 445-449
|
[21] |
Hall, A. Rho GTPases and the actin cytoskeleton Science, 279 (1998),pp. 509-514
|
[22] |
Hall, A., Lalli, G. Rho and Ras GTPases in axon growth, guidance, and branching Cold Spring Harb. Perspect. Biol., 2 (2010),p. a001818
|
[23] |
Herring, B.E., Nicoll, R.A. Kalirin and Trio proteins serve critical roles in excitatory synaptic transmission and LTP Proc. Natl. Acad. Sci. U. S. A., 113 (2016),pp. 2264-2269
|
[24] |
Islam, S.M., Shinmyo, Y., Okafuji, T. et al. Draxin, a repulsive guidance protein for spinal cord and forebrain commissures Science, 323 (2009),pp. 388-393
|
[25] |
Jaffe, A.B., Hall, A. Rho GTPases: biochemistry and biology Annu. Rev. Cell Dev. Biol., 21 (2005),pp. 247-269
|
[26] |
Katrancha, S.M., Wu, Y., Zhu, M. et al. Hum. Mol. Genet., 26 (2017),pp. 4728-4740
|
[27] |
Lagenaur, C., Lemmon, V. An L1-like molecule, the 8D9 antigen, is a potent substrate for neurite extension Proc. Natl. Acad. Sci. U. S. A., 84 (1987),pp. 7753-7757
|
[28] |
Lee, J.-W., Yeo, S.-G., Kang, B.-H. et al. Echovirus 30 induced neuronal cell death through TRIO-RhoA signaling activation PLoS One, 7 (2012)
|
[29] |
Li, X., Gao, X., Liu, G. et al. Netrin signal transduction and the guanine nucleotide exchange factor DOCK180 in attractive signaling Nat. Neurosci., 11 (2008),pp. 28-35
|
[30] |
Li, X., Saint-Cyr-Proulx, E., Aktories, K. et al. Rac1 and Cdc42 but not RhoA or Rho kinase activities are required for neurite outgrowth induced by the Netrin-1 receptor DCC (deleted in colorectal cancer) in N1E-115 neuroblastoma cells J. Biol. Chem., 277 (2002),pp. 15207-15214
|
[31] |
Li, Z., Aizenman, C.D., Cline, H.T. Neuron, 33 (2002),pp. 741-750
|
[32] |
Liu, P.T., Jenkins, N.A., Copeland, N.G. A highly efficient recombineering-based method for generating conditional knockout mutations Genome Res., 13 (2003),pp. 476-484
|
[33] |
Luo, L. Rho GTPases in neuronal morphogenesis Nat. Rev. Neurosci., 1 (2000),pp. 173-180
|
[34] |
McPherson, C.E., Eipper, B.A., Mains, R.E. Multiple novel isoforms of Trio are expressed in the developing rat brain Gene, 347 (2005),pp. 125-135
|
[35] |
Nadif Kasri, N., Van Aelst, L. Rho-linked genes and neurological disorders , 455 (2008),pp. 787-797
|
[36] |
Peng, Y.-J., He, W.-Q., Tang, J. et al. Trio is a key guanine nucleotide exchange factor coordinating regulation of the migration and morphogenesis of granule cells in the developing cerebellum J. Biol. Chem., 285 (2010),pp. 24834-24844
|
[37] |
Pengelly, R.J., Greville-Heygate, S., Schmidt, S. et al. Mutations specific to the Rac-GEF domain of TRIO cause intellectual disability and microcephaly J. Med. Genet., 53 (2016),pp. 735-742
|
[38] |
, Chauhan, B.K., Yang, C., Jaudon, F. et al. A Trio-RhoA-Shroom3 pathway is required for apical constriction and epithelial invagination Development, 138 (2011),pp. 5177-5188
|
[39] |
Portales-Casamar, E., Briancon-Marjollet, A., Fromont, S. et al. Identification of novel neuronal isoforms of the Rho-GEF Trio Biol. Cell, 98 (2006),pp. 183-193
|
[40] |
Rossman, K.L., Der, C.J., Sondek, J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors Nat. Rev. Mol. Cell Biol., 6 (2005),pp. 167-180
|
[41] |
Sadybekov, A., Tian, C., Arnesano, C. et al. Nat. Commun., 8 (2017),p. 601
|
[42] |
Shekarabi, M., Kennedy, T.E. The Netrin-1 receptor DCC promotes filopodia formation and cell spreading by activating Cdc42 and Rac1 Mol. Cell. Neurosci., 19 (2002),pp. 1-17
|
[43] |
Stéphanie, P., Harry, M. Rho GTPase activation assays Curr. Protoc. Cell Biol., 38 (2008)
|
[44] |
Tahirovic, S., Hellal, F., Neukirchen, D. et al. Rac1 regulates neuronal polarization through the WAVE complex J. Neurosci., 30 (2010),pp. 6930-6943
|
[45] |
van Bokhoven, H. Genetic and epigenetic networks in intellectual disabilities Annu. Rev. Genet., 45 (2011),pp. 81-104
|
[46] |
Zong, W., Liu, S., Wang, X. et al. Brain Res., 1608 (2015),pp. 82-90
|