5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 2
Feb.  2019
Turn off MathJax
Article Contents

The genome-wide landscape of small insertion and deletion mutations in Monopterus albus

doi: 10.1016/j.jgg.2019.02.002
More Information
  • Corresponding author: E-mail address: hhcheng@whu.edu.cn (Hanhua Cheng); E-mail address: rjzhou@whu.edu.cn (Rongjia Zhou)
  • Received Date: 2018-09-30
  • Accepted Date: 2019-02-01
  • Rev Recd Date: 2018-12-21
  • Available Online: 2019-02-23
  • Publish Date: 2019-02-01
  • Insertion and deletion (indel) mutations, which can trigger single nucleotide substitutions on the flanking regions of genes, may generate abundant materials for disease defense, reproduction, species survival and evolution. However, genetic and evolutionary mechanisms of indels remain elusive. We establish a comparative genome-transcriptome-alignment approach for a large-scale identification of indels inMonopterus population. Over 2000 indels in 1738 indel genes, including 1–21 bp deletions and 1–15 bp insertions, were detected. Each indel gene had ∼1.1 deletions/insertions, and 2–4 alleles in population. Frequencies of deletions were prominently higher than those of insertions on both genome and population levels. Most of the indels led to in frame mutations with multiples of three and majorly occurred in non-domain regions, indicating functional constraint or tolerance of the indels. All indel genes showed higher expression levels than non-indel genes during sex reversal. Slide window analysis of global expression levels in gonads showed a significant positive correlation with indel density in the genome. Moreover, indel genes were evolutionarily conserved and evolved slowly compared to non-indel genes. Notably, population genetic structure of indels revealed divergent evolution of Monopterus population, as bottleneck effect of biogeographic isolation by Taiwan Strait, China.
  • loading
  • [1]
    Aguilera, A. The connection between transcription and genomic instability EMBO J., 21 (2002),pp. 195-201
    [2]
    Benton, M.J., Donoghue, P.C.J. Paleontological evidence to date the tree of life Mol. Biol. Evol., 24 (2007),pp. 26-53
    [3]
    Bilgin Sonay, T., Carvalho, T., Robinson, M.D. et al. Tandem repeat variation in human and great ape populations and its impact on gene expression divergence Genome Res., 25 (2015),pp. 1591-1599
    [4]
    Bullough, W.S. Hermaphroditism in the lower vertebrates Nature, 160 (1947),p. 9
    [5]
    Cheng, H.H., Guo, Y.Q, Yu, Q.X., Zhou, R.J. The rice field eel as a model system for vertebrate sexual development Cytogenet. Genome Res., 101 (2003),pp. 274-277
    [6]
    Collins, T.M., Trexler, J.C., Nico, L.G. et al. Genetic diversity in a morphologically conservative invasive taxon: multiple introductions of swamp eels to the Southeastern United States Conserv. Biol., 16 (2002),pp. 1024-1035
    [7]
    Datta, A., Jinksrobertson, S. Association of increased spontaneous mutation-rates with high-levels of transcription in yeast Science, 268 (1995),pp. 1616-1619
    [8]
    Driscoll, C.A., Macdonald, D.W., O'Brien, S.J. From wild animals to domestic pets, an evolutionary view of domestication Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 9971-9978
    [9]
    Earl, D.A., Vonholdt, B.M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method Conserv. Genet. Resour., 4 (2012),pp. 359-361
    [10]
    El-Soda, M., Malosetti, M., Zwaan, B.J. et al. Trends Plant Sci., 19 (2014),pp. 390-398
    [11]
    Evanno, G., Regnaut, S., Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study Mol. Ecol., 14 (2005),pp. 2611-2620
    [12]
    Fan, G.Y., Ye, Y., Hou, Y.P. Detecting a hierarchical genetic population structure via Multi-InDel markers on the X chromosome Sci. Rep., 6 (2016),p. 32178
    [13]
    Finn, R.D., Coggill, P., Eberhardt, R.Y. et al. The Pfam protein families database: towards a more sustainable future Nucleic Acids Res., 44 (2016),pp. D279-D285
    [14]
    Gonzaga-Jauregui, C., Lupski, J.R., Gibbs, R.A. Human genome sequencing in health and disease Annu. Rev. Med., 63 (2012),pp. 35-61
    [15]
    Gower, J.C. Some distance properties of latent root and vector methods used in multivariate analysis Biometrika, 53 (1966),pp. 325-338
    [16]
    Grabherr, M.G., Haas, B.J., Yassour, M. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome Nat. Biotechnol., 29 (2011),pp. 644-652
    [17]
    Guo, B.C., Zou, M., Wagner, A. Pervasive indels and their evolutionary dynamics after the fish-specific genome duplication Mol. Biol. Evol., 29 (2012),pp. 3005-3022
    [18]
    Guo, J., Gu, L., Leffak, M. et al. MutSbeta promotes trinucleotide repeat expansion by recruiting DNA polymerase beta to nascent (CAG)n or (CTG)n hairpins for error-prone DNA synthesis Cell Res., 26 (2016),pp. 775-786
    [19]
    Haas, B.J., Papanicolaou, A., Yassour, M. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis Nat. Protoc., 8 (2013),pp. 1494-1512
    [20]
    Hanawalt, P.C., Spivak, G. Transcription-coupled DNA repair: two decades of progress and surprises Nat. Rev. Mol. Cell Biol., 9 (2008),pp. 958-970
    [21]
    He, Y., Shang, X., Sun, J.H. et al. Gonadal apoptosis during sex reversal of the rice field eel: implications for an evolutionarily conserved role of the molecular chaperone heat shock protein 10 J. Exp. Zool. Part B., 314 (2010),pp. 257-266
    [22]
    Huang, D.W., Sherman, B.T., Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources Nat. Protoc., 4 (2009),pp. 44-57
    [23]
    Huelsenbeck, J.P., Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees Bioinformatics, 17 (2001),pp. 754-755
    [24]
    Imielinski, M., Guo, G., Meyerson, M. Insertions and deletions target lineage-defining genes in human cancers Cell, 168 (2017),pp. 460-472
    [25]
    Joseph, S.N.
    [26]
    Kalinowski, S.T., Taper, M.L., Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment Mol. Ecol., 19 (2010)
    [27]
    Kent, W.J. BLAT - the BLAST-like alignment tool Genome Res., 12 (2002),pp. 656-664
    [28]
    Kim, N., Jinks-Robertson, S. Transcription as a source of genome instability Nat. Rev. Genet., 13 (2012),pp. 204-214
    [29]
    Krzywinski, M., Schein, J., Birol, I. et al. Circos: an information aesthetic for comparative genomics Genome Res., 19 (2009),pp. 1639-1645
    [30]
    Lai, Y.H., Budworth, H., Beaver, J.M. et al. Crosstalk between MSH2-MSH3 and pol beta promotes trinucleotide repeat expansion during base excision repair Nat. Commun., 7 (2016),p. 12465
    [31]
    Larkin, M.A., Blackshields, G., Brown, N.P. et al. Clustal W and clustal X version 2.0 Bioinformatics, 23 (2007),pp. 2947-2948
    [32]
    Lee, J.C., Biasci, D., Roberts, R. et al. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn's disease Nat. Genet., 49 (2017),pp. 262-268
    [33]
    Li, M.Z., Tian, S.L., Jin, L. et al. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars Nat. Genet., 45 (2013)
    [34]
    Li, Z., Chen, F., Huang, C. et al. Genome-wide mapping and characterization of microsatellites in the swamp eel genome Sci. Rep., 7 (2017),p. 3157
    [35]
    Liu, C.K. Sinensia, 15 (1944),pp. 1-8
    [36]
    McMurray, C.T. Mechanisms of trinucleotide repeat instability during human development Nat. Rev. Genet., 11 (2010),pp. 786-799
    [37]
    Mirkin, S.M. Expandable DNA repeats and human disease Nature, 447 (2007),pp. 932-940
    [38]
    Park, C., Qian, W., Zhang, J. Genomic evidence for elevated mutation rates in highly expressed genes EMBO Rep., 13 (2012),pp. 1123-1129
    [39]
    Peakall, R., Smouse, P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update Bioinformatics, 28 (2012),pp. 2537-2539
    [40]
    Posada, D., Crandall, K.A. MODELTEST: testing the model of DNA substitution Bioinformatics, 14 (1998),pp. 817-818
    [41]
    Pritchard, J.K., SDtephens, M., Donnelly, P. Inference of population structure using multilocus genotype data Genetics, 155 (2000),pp. 945-959
    [42]
    Richard, G.F., Kerrest, A., Dujon, B. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes Microbiol. Mol. Biol. Rev., 72 (2008),pp. 686-727
    [43]
    Shan, L., Hu, Y., Zhu, L. et al. Large-scale genetic survey provides insights into the captive management and reintroduction of giant pandas Mol. Biol. Evol., 31 (2014),pp. 2663-2671
    [44]
    Shen, F.J., Zhang, Z.H., He, W. et al. Microsatellite variability reveals the necessity for genetic input from wild giant pandas (Ailuropoda melanoleuca) into the captive population Mol. Ecol., 18 (2009),pp. 1061-1070
    [45]
    Spearman, C. The theory of two factors Psychol. Rev., 21 (1914),pp. 101-115
    [46]
    Svejstrup, J.Q. Mechanisms of transcription-coupled DNA repair Nat. Rev. Mol. Cell Biol., 3 (2002),pp. 21-29
    [47]
    Tamura, K., Stecher, G., Peterson, D. et al. MEGA6: molecular evolutionary genetics analysis version 6.0 Mol. Biol. Evol., 30 (2013),pp. 2725-2729
    [48]
    Tautz, D., Renz, M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes Nucleic Acids Res., 12 (1984),pp. 4127-4138
    [49]
    Tian, D., Wang, Q., Zhang, P. et al. Single-nucleotide mutation rate increases close to insertions/deletions in eukaryotes Nature, 455 (2008),pp. 105-108
    [50]
    Toth, G., Gaspari, Z., Jurka, J. Microsatellites in different eukaryotic genomes: survey and analysis Genome Res., 10 (2000),pp. 967-981
    [51]
    Trapnell, C., Pachter, L., Salzberg, S.L. TopHat: discovering splice junctions with RNA-Seq Bioinformatics, 25 (2009),pp. 1105-1111
    [52]
    Weber, D., Stewart, B.S., Garza, J.C. et al. An empirical genetic assessment of the severity of the northern elephant seal population bottleneck Curr. Biol., 10 (2000),pp. 1287-1290
    [53]
    Yang, Z.H. PAML 4: phylogenetic analysis by maximum likelihood Mol. Biol. Evol., 24 (2007),pp. 1586-1591
    [54]
    Zhao, X.Y., Luo, M.J., Li, Z.G. et al. GigaScience, 7 (2018),pp. 1-9
    [55]
    Zhang, J.Z., Yang, J.R. Determinants of the rate of protein sequence evolution Nat. Rev. Genet., 16 (2015),p. 409
    [56]
    Zuo, Z.X., Peng, D., Yin, X.J. et al. Genome-wide analysis reveals origin of transfer RNA genes from tRNA halves Mol. Biol. Evol., 30 (2013),pp. 2087-2098
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (120) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return