5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 1
Jan.  2019
Turn off MathJax
Article Contents

OsSPL18 controls grain weight and grain number in rice

doi: 10.1016/j.jgg.2019.01.003
More Information
  • Corresponding author: E-mail address: lishigui@sicau.edu.cn (Shigui Li)
  • Received Date: 2018-11-07
  • Accepted Date: 2019-01-20
  • Rev Recd Date: 2018-12-24
  • Available Online: 2019-01-23
  • Publish Date: 2019-01-20
  • Grain weight and grain number are two important traits directly determining grain yield in rice. To date, a lot of genes related to grain weight and grain number have been identified; however, the regulatory mechanism underlying these genes remains largely unknown. In this study, we studied the biological function of OsSPL18 during grain and panicle development in rice. Knockout (KO) mutants of OsSPL18 exhibited reduced grain width and thickness, panicle length and grain number, but increased tiller number. Cytological analysis showed that OsSPL18 regulates the development of spikelet hulls by affecting cell proliferation. qRT-PCR and GUS staining analyses showed that OsSPL18 was highly expressed in developing young panicles and young spikelet hulls, in agreement with its function in regulating grain and panicle development. Transcriptional activation experiments indicated that OsSPL18 is a functional transcription factor with activation domains in both the N-terminus and C-terminus, and both activation domains are indispensable for its biological functions. Quantitative expression analysis showed that DEP1, a major grain number regulator, was significantly down-regulated in OsSPL18 KO lines. Both yeast one-hybrid and dual-luciferase (LUC) assays showed that OsSPL18 could bind to the DEP1 promoter, suggesting that OsSPL18 regulates panicle development by positively regulating the expression of DEP1. Sequence analysis showed that OsSPL18 contains the OsmiR156k complementary sequence in the third exon; 5ʹ RLM-RACE experiments indicated that OsSPL18 could be cleaved by OsmiR156k. Taken together, our results uncovered a new OsmiR156k-OsSPL18-DEP1 pathway regulating grain number in rice.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Ashikari, M., Sakakibara, H., Lin, S. et al. Cytokinin oxidase regulates rice grain production Science, 309 (2005),pp. 741-745 doi: 10.1126/science.1113373
    [2]
    Bai, X., Huang, Y., Hu, Y. et al. Duplication of an upstream silencer of FZP increases grain yield in rice Nat. Plants, 3 (2017),pp. 885-893 doi: 10.1038/s41477-017-0042-4
    [3]
    Bai, X., Huang, Y., Mao, D. et al. Regulatory role of FZP in the determination of panicle branching and spikelet formation in rice Sci. Rep., 6 (2016),p. 19022
    [4]
    Birkenbihl, R.P., Jach, G., Saedler, H. et al. Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains J. Mol. Biol., 352 (2005),pp. 585-596
    [5]
    Chen, X., Zhang, Z., Liu, D. et al. SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development J. Integr. Plant Biol., 52 (2010),pp. 946-951 doi: 10.1111/j.1744-7909.2010.00987.x
    [6]
    Dai, Z., Wang, J., Yang, X. et al. Modulation of plant architecture by the miR156f-OsSPL7-OsGH3.8 pathway in rice J. Exp. Bot., 69 (2018),pp. 5117-5130 doi: 10.1093/jxb/ery273
    [7]
    Duan, P., Xu, J., Zeng, D. et al. Mol. Plant, 10 (2017),pp. 685-694
    [8]
    Fan, C., Xing, Y., Mao, H. et al. Theor. Appl. Genet., 112 (2006),pp. 1164-1171 doi: 10.1007/s00122-006-0218-1
    [9]
    Hiei, Y., Ohta, S., Komari, T. et al. Plant J., 6 (1994),pp. 271-282
    [10]
    Hu, J., Wang, Y., Fang, Y. et al. Mol. Plant, 8 (2015),pp. 1455-1465
    [11]
    Huang, K., Wang, D., Duan, P. et al. Plant J., 91 (2017),pp. 849-860 doi: 10.1111/tpj.13613
    [12]
    Huang, X., Qian, Q., Liu, Z. et al. Nat. Genet., 41 (2009),pp. 494-497 doi: 10.1038/ng.352
    [13]
    Ishii, T., Numaguchi, K., Miura, K. et al. Nat. Genet., 45 (2013),pp. 462-465 doi: 10.1038/ng.2567
    [14]
    Ishimaru, K., Hirotsu, N., Madoka, Y. et al. Nat. Genet., 45 (2013),pp. 707-711 doi: 10.1038/ng.2612
    [15]
    Jiang, L., Liu, X., Xiong, G. et al. DWARF 53 acts as a repressor of strigolactone signalling in rice Nature, 504 (2013),pp. 401-405 doi: 10.1038/nature12870
    [16]
    Jiao, Y., Wang, Y., Xue, D. et al. Nat. Genet., 42 (2010),pp. 541-544 doi: 10.1038/ng.591
    [17]
    Klein, J., Saedler, H., Huijser, P. Mol. Gen. Genet., 250 (1996),pp. 7-16
    [18]
    Lee, J., Park, J.J., Kim, S.L. et al. Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint Plant Mol. Biol., 65 (2007),pp. 487-499
    [19]
    Li, M., Tang, D., Wang, K. et al. Plant Biotechnol. J., 9 (2011),pp. 1002-1013 doi: 10.1111/j.1467-7652.2011.00610.x
    [20]
    Li, S., Zhao, B., Yuan, D. et al. Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 3167-3172 doi: 10.1073/pnas.1300359110
    [21]
    Li, X., Qian, Q., Fu, Z. et al. Control of tillering in rice Nature, 422 (2003),pp. 618-621
    [22]
    Li, Y., Fan, C., Xing, Y. et al. Nat. Genet., 43 (2011),pp. 1266-1269 doi: 10.1038/ng.977
    [23]
    Liu, J., Chen, J., Zheng, X. et al. Nat. Plants, 3 (2017),p. 17043
    [24]
    Liu, L., Tong, H., Xiao, Y. et al. Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 11102-11107 doi: 10.1073/pnas.1512748112
    [25]
    Liu, Q., Han, R., Wu, K. et al. G-protein betagamma subunits determine grain size through interaction with MADS-domain transcription factors in rice Nat. Commun., 9 (2018),p. 852
    [26]
    Liu, Q., Harberd, N.P., Fu, X. SQUAMOSA promoter binding protein-like transcription factors: targets for improving cereal grain yield Mol. Plant, 9 (2016),pp. 765-767
    [27]
    Lu, Z., Yu, H., Xiong, G. et al. Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant architecture Plant Cell, 25 (2013),pp. 3743-3759 doi: 10.1105/tpc.113.113639
    [28]
    Mao, H., Sun, S., Yao, J. et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 19579-19584 doi: 10.1073/pnas.1014419107
    [29]
    Miura, K., Ikeda, M., Matsubara, A. et al. Nat. Genet., 42 (2010),pp. 545-549 doi: 10.1038/ng.592
    [30]
    Paradis, E. pegas: an R package for population genetics with an integrated-modular approach Bioinformatics, 26 (2010),pp. 419-420 doi: 10.1093/bioinformatics/btp696
    [31]
    Shan, Q., Wang, Y., Li, J. et al. Targeted genome modification of crop plants using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 686-688 doi: 10.1038/nbt.2650
    [32]
    Si, L., Chen, J., Huang, X. et al. Nat. Genet., 48 (2016),pp. 447-456 doi: 10.1038/ng.3518
    [33]
    Song, X.J., Huang, W., Shi, M. et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase Nat. Genet., 39 (2007),pp. 623-630 doi: 10.1038/ng2014
    [34]
    Song, X.J., Kuroha, T., Ayano, M. et al. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 76-81 doi: 10.1073/pnas.1421127112
    [35]
    Sun, S., Wang, L., Mao, H. et al. A G-protein pathway determines grain size in rice Nat. Commun., 9 (2018),p. 851
    [36]
    Taguchi-Shiobara, F., Kawagoe, Y., Kato, H. et al. Breed Sci., 61 (2011),pp. 17-25 doi: 10.1270/jsbbs.61.17
    [37]
    Takeda, T., Suwa, Y., Suzuki, M. et al. Plant J., 33 (2003),pp. 513-520
    [38]
    Tang, M., Zhou, C., Meng, L. et al. J. Genet. Genomics, 43 (2016),pp. 673-676
    [39]
    Tong, H., Jin, Y., Liu, W. et al. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice Plant J., 58 (2009),pp. 803-816
    [40]
    Wang, H., Wang, H. The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits Mol. Plant, 8 (2015),pp. 677-688
    [41]
    Wang, L., Sun, S., Jin, J. et al. Coordinated regulation of vegetative and reproductive branching in rice Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 15504-15509 doi: 10.1073/pnas.1521949112
    [42]
    Wang, L., Zhang, Q. Trends Plant Sci., 22 (2017),pp. 643-646
    [43]
    Wang, Q.L., Sun, A.Z., Chen, S.T. et al. SPL6 represses signalling outputs of ER stress in control of panicle cell death in rice Nat. Plants, 4 (2018),pp. 280-288 doi: 10.1038/s41477-018-0131-z
    [44]
    Wang, S., Li, S., Liu, Q. et al. Nat. Genet., 47 (2015),pp. 949-954 doi: 10.1038/ng.3352
    [45]
    Wang, S., Wu, K., Qian, Q. et al. Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield Cell Res., 27 (2017),pp. 1142-1156 doi: 10.1038/cr.2017.98
    [46]
    Wang, S., Wu, K., Yuan, Q. et al. Nat. Genet., 44 (2012),pp. 950-954
    [47]
    Wang, W., Mauleon, R., Hu, Z. et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice Nature, 557 (2018),pp. 43-49 doi: 10.1038/s41586-018-0063-9
    [48]
    Wang, Y., Xiong, G., Hu, J. et al. Nat. Genet., 47 (2015),pp. 944-948 doi: 10.1038/ng.3346
    [49]
    Xie, K., Wu, C., Xiong, L. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice Plant Physiol., 142 (2006),pp. 280-293 doi: 10.1104/pp.106.084475
    [50]
    Xing, Y., Zhang, Q. Genetic and molecular bases of rice yield Annu. Rev. Plant Biol., 61 (2010),pp. 421-442 doi: 10.1146/annurev-arplant-042809-112209
    [51]
    Yan, C.J., Zhou, J.H., Yan, S. et al. Theor. Appl. Genet., 115 (2007),pp. 1093-1100 doi: 10.1007/s00122-007-0635-9
    [52]
    Yang, Z., Wang, X., Gu, S. et al. Gene, 407 (2008),pp. 1-11
    [53]
    Yi, X., Zhang, Z., Zeng, S. et al. J. Genet. Genomics, 38 (2011),pp. 217-223
    [54]
    Yu, J., Miao, J., Zhang, Z. et al. Plant Biotechnol. J., 16 (2018),pp. 1667-1678 doi: 10.1111/pbi.12903
    [55]
    Yu, J., Xiong, H., Zhu, X. et al. BMC Biol., 15 (2017),p. 28
    [56]
    Yuan, H., Fan, S., Huang, J. et al. Rice, 10 (2017),p. 25
    [57]
    Yue, E., Li, C., Li, Y. et al. Plant Mol. Biol., 94 (2017),pp. 469-480 doi: 10.1007/s11103-017-0618-4
    [58]
    Yue, E., Liu, Z., Li, C. et al. Plant Cell Rep., 36 (2017),pp. 1171-1182 doi: 10.1007/s00299-017-2146-8
    [59]
    Zhang, L., Yu, H., Ma, B. et al. Nat. Commun., 8 (2017),p. 14789
    [60]
    Zhao, H., Yao, W., Ouyang, Y. et al. RiceVarMap: a comprehensive database of rice genomic variations Nucleic Acids Res., 43 (2015),pp. D1018-D1022 doi: 10.1093/nar/gku894
    [61]
    Zheng, T.Q., Hong, Y.U., Zhang, H.L. et al. Rice functional genomics and breeding database (RFGB)-3K-rice SNP and InDel sub-database Chin. Sci. Bull., 60 (2015),p. 367 doi: 10.1360/N972014-01231
    [62]
    Zhou, F., Lin, Q., Zhu, L. et al. Nature, 504 (2013),pp. 406-410 doi: 10.1038/nature12878
    [63]
    Zhou, Y., Miao, J., Gu, H. et al. Genetics, 201 (2015),pp. 1591-1599 doi: 10.1534/genetics.115.181115
    [64]
    Zhou, Y., Zhu, J., Li, Z. et al. Genetics, 183 (2009),pp. 315-324 doi: 10.1534/genetics.109.102681
    [65]
    Zhu, Z., Tan, L., Fu, Y. et al. Genetic control of inflorescence architecture during rice domestication Nat. Commun., 4 (2013),p. 2200
    [66]
    Zuo, J., Li, J. Molecular genetic dissection of quantitative trait loci regulating rice grain size Annu. Rev. Genet., 48 (2014),pp. 99-118 doi: 10.1146/annurev-genet-120213-092138
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (301) PDF downloads (12) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return