[1] |
Aughey, G.N., Grice, S.J., Liu, J.L. PLoS Genet., 12 (2016),p. e1005867
|
[2] |
Aughey, G.N., Grice, S.J., Shen, Q.J. et al. Nucleotide synthesis is regulated by cytoophidium formation during neurodevelopment and adaptive metabolism Biol. Open, 3 (2014),pp. 1045-1056
|
[3] |
Azzam, G., Liu, J.L. PLoS Genet., 9 (2013),p. e1003256
|
[4] |
Barry, R.M., Bitbol, A.F., Lorestani, A. et al. Large-scale filament formation inhibits the activity of CTP synthetase eLife, 3 (2014),p. e03638
|
[5] |
Ben-Sahra, I., Howell, J.J., Asara, J.M. et al. Science, 339 (2013),pp. 1323-1328
|
[6] |
Ben-Sahra, I., Hoxhaj, G., Ricoult, S.J.H. et al. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle Science, 351 (2016),pp. 728-733
|
[7] |
Carcamo, W.C., Satoh, M., Kasahara, H. et al. Induction of cytoplasmic rods and rings structures by inhibition of the CTP and GTP synthetic pathway in mammalian cells PLoS One, 6 (2011),p. e29690
|
[8] |
Chang, C.C., Jeng, Y.M., Peng, M. et al. CTP synthase forms the cytoophidium in human hepatocellular carcinoma Exp. Cell Res., 361 (2017),pp. 292-299
|
[9] |
Chang, Y.F., Martin, S.S., Baldwin, E.P. et al. Phosphorylation of human CTP synthetase 1 by protein kinase C: identification of Ser(462) and Thr(455) as major sites of phosphorylation J. Biol. Chem., 282 (2007),pp. 17613-17622
|
[10] |
Chen, K., Zhang, J., Tastan, O.Y. et al. J. Genet. Genomics., 38 (2011),pp. 391-402
|
[11] |
Choi, M.G., Park, T.S., Carman, G.M. J. Biol. Chem., 278 (2003),pp. 23610-23616
|
[12] |
Earhart, R.H., Amato, D.J., Chang, A.Y. et al. Phase II trial of 6-diazo-5-oxo-L-norleucine versus aclacinomycin-A in advanced sarcomas and mesotheliomas Invest. N. Drugs, 8 (1990),pp. 113-119
|
[13] |
Ellims, P.H., Gan, T.E., Medley, G. Cytidine triphosphate synthetase activity in lymphoproliferative disorders Cancer Res., 43 (1983),pp. 1432-1435
|
[14] |
Falkson, G., Cnaan, A., Simson, I.W. et al. A randomized phase II study of acivicin and 4'deoxydoxorubicin in patients with hepatocellular carcinoma in an Eastern Cooperative Oncology Group study Am. J. Clin. Oncol., 13 (1990),pp. 510-515
|
[15] |
Fingar, D.C., Salama, S., Tsou, C. et al. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E Genes Dev., 16 (2002),pp. 1472-1487
|
[16] |
Grabiner, B.C., Nardi, V., Birsoy, K. et al. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity Cancer Discov., 4 (2014),pp. 554-563
|
[17] |
Han, G.S., Sreenivas, A., Choi, M.G. et al. J. Biol. Chem., 280 (2005),pp. 38328-38336
|
[18] |
Higgins, M.J., Graves, P.R., Graves, L.M. Regulation of human cytidine triphosphate synthetase 1 by glycogen synthase kinase 3 J. Biol. Chem., 282 (2007),pp. 29493-29503
|
[19] |
Huang, M., Graves, L.M. Cell. Mol. Life Sci., 60 (2003),pp. 321-336
|
[20] |
Huang, Y., Wang, J.J., Ghosh, S. et al. Critical roles of CTP synthase N-terminal in cytoophidium assembly Exp. Cell Res., 354 (2017),pp. 122-133
|
[21] |
Ingerson-Mahar, M., Briegel, A., Werner, J.N. et al. The metabolic enzyme CTP synthase forms cytoskeletal filaments Nat. Cell Biol., 12 (2010),pp. 739-746
|
[22] |
Julien, L.A., Carriere, A., Moreau, J. et al. mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling Mol. Cell. Biol., 30 (2010),pp. 908-921
|
[23] |
Kizaki, H., Williams, J.C., Morris, H.P. et al. Increased cytidine 5'-triphosphate synthetase activity in rat and human tumors Cancer Res., 40 (1980),pp. 3921-3927
|
[24] |
Levitzki, A., Cytidine triphosphate synthetase. Covalent intermediates and mechanisms of action Biochemistry, 10 (1971),pp. 3365-3371
|
[25] |
Liu, J.L. J. Genet. Genomics., 37 (2010),pp. 281-296
|
[26] |
Liu, J.L. The cytoophidium and its kind: filamentation and compartmentation of metabolic enzymes Annu. Rev. Cell Dev. Biol., 32 (2016),pp. 349-372
|
[27] |
Lloyd, A.C. The regulation of cell size Cell, 154 (2013),pp. 1194-1205
|
[28] |
Lynch, E.M., Hicks, D.R., Shepherd, M. et al. Human CTP synthase filament structure reveals the active enzyme conformation Nat. Struct. Mol. Biol., 24 (2017),pp. 507-514
|
[29] |
Lynch, G., Kemeny, N., Casper, E. Phase II evaluation of DON (6-diazo-5-oxo-L-norleucine) in patients with advanced colorectal carcinoma Am. J. Clin. Oncol., 5 (1982),pp. 541-543
|
[30] |
Maroun, J.A., Stewart, D.J., Verma, S. et al. Phase I study of acivicin and cisplatin in non-small-cell lung cancer. A National Cancer Institute of Canada study Am. J. Clin. Oncol., 13 (1990),pp. 401-404
|
[31] |
Noree, C., Monfort, E., Shiau, A.K. et al. Common regulatory control of CTP synthase enzyme activity and filament formation Mol. Biol. Cell, 25 (2014),pp. 2282-2290
|
[32] |
Noree, C., Sato, B.K., Broyer, R.M. et al. J. Cell Biol., 190 (2010),pp. 541-551
|
[33] |
Park, T.S., O'Brien, D.J., Carman, G.M. J. Biol. Chem., 278 (2003),pp. 20785-20794
|
[34] |
Park, T.S., Ostrander, D.B., Pappas, A. et al. Biochemistry, 38 (1999),pp. 8839-8848
|
[35] |
Robitaille, A.M., Christen, S., Shimobayashi, M. et al. Science, 339 (2013),pp. 1320-1323
|
[36] |
Rubin, J., Sorensen, S., Schutt, A.J. et al. A phase II study of 6-diazo-5-oxo-L-norleucine (DON, NSC-7365) in advanced large bowel carcinoma Am. J. Clin. Oncol., 6 (1983),pp. 325-326
|
[37] |
Sarbassov, D.D., Ali, S.M., Sengupta, S. et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB Mol. Cell, 22 (2006),pp. 159-168
|
[38] |
Sarbassov, D.D., Guertin, D.A., Ali, S.M. et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex Science, 307 (2005),pp. 1098-1101
|
[39] |
Sato, T., Nakashima, A., Guo, L. et al. Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer Oncogene, 29 (2010),pp. 2746-2752
|
[40] |
Saxton, R.A., Sabatini, D.M. mTOR signaling in growth, metabolism, and disease Cell, 169 (2017),pp. 361-371
|
[41] |
Schmidt, T.T., Reyes, G., Gries, K. et al. Alterations in cellular metabolism triggered by URA7 or GLN3 inactivation cause imbalanced dNTP pools and increased mutagenesis Proc. Natl. Acad. Sci. U. S. A., 114 (2017),pp. E4442-E4451
|
[42] |
Strochlic, T.I., Stavrides, K.P., Thomas, S.V. et al. EMBO Rep., 15 (2014),pp. 1184-1191
|
[43] |
Traut, T.W. Physiological concentrations of purines and pyrimidines Mol. Cell. Biochem., 140 (1994),pp. 1-22
|
[44] |
Treins, C., Warne, P.H., Magnuson, M.A. et al. Rictor is a novel target of p70 S6 kinase-1 Oncogene, 29 (2010),pp. 1003-1016
|
[45] |
Valvezan, A.J., Turner, M., Belaid, A. et al. mTORC1 couples nucleotide synthesis to nucleotide demand resulting in a targetable metabolic vulnerability Cancer Cell, 32 (2017),pp. 624-638 e625
|
[46] |
van den Berg, A.A., van Lenthe, H., Busch, S. et al. Eur. J. Biochem., 216 (1993),pp. 161-167
|
[47] |
Wang, P.Y., Lin, W.C., Tsai, Y.C. et al. Genetics, 201 (2015),pp. 1511-1523
|
[48] |
Weber, G., Lui, M.S., Takeda, E. et al. Enzymology of human colon tumors Life Sci., 27 (1980),pp. 793-799
|
[49] |
Williams, J.C., Kizaki, H., Weber, G. et al. Increased CTP synthetase activity in cancer cells Nature, 271 (1978),pp. 71-73
|
[50] |
Willoughby, L.F., Schlosser, T., Manning, S.A. et al. Dis. Model. Mech., 6 (2013),pp. 521-529
|
[51] |
Zhang, H., Stallock, J.P., Ng, J.C. et al. Genes Dev., 14 (2000),pp. 2712-2724
|