5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 11
Nov.  2018
Turn off MathJax
Article Contents

Retrospective and perspective of rice breeding in China

doi: 10.1016/j.jgg.2018.10.002
More Information
  • Corresponding author: E-mail address: jyli@genetics.ac.cn (Jiayang Li)
  • Received Date: 2018-07-31
  • Accepted Date: 2018-10-22
  • Rev Recd Date: 2018-10-12
  • Available Online: 2018-11-03
  • Publish Date: 2018-11-20
  • Breeding is the art and science of selecting and changing crop traits for the benefit of human beings. For several decades, tremendous efforts have been made by Chinese scientists in rice breeding in improving grain yield, nutrition quality, and environmental performance, achieving substantial progress for global food security. Several generations of crop breeding technologies have been developed, for example, selection of better performance in the field among variants (conventional breeding), application of molecular markers for precise selection (molecular marker assisted breeding), and development of molecular design (molecular breeding by rational design). In this review, we briefly summarize the advances in conventional breeding, functional genomics for genes and networks in rice that regulate important agronomic traits, and molecular breeding in China with focuses on high yield, good quality, stress tolerance, and high nutrient-use efficiency. These findings have paved a new avenue for rational design of crops to develop ideal varieties with super performance and productivity.
  • loading
  • [1]
    Ahloowalia, B.S., Maluszynski, M. Induced mutations-A new paradigm in plant breeding Euphytica, 118 (2001),pp. 167-173
    [2]
    Bai, S., Smith, S.M., Li, J.
    [3]
    Birchler, J.A. Heterosis: the genetic basis of hybrid vigour Nat. Plants, 1 (2015),p. 15020
    [4]
    Che, R., Tong, H., Shi, B. et al. Control of grain size and rice yield by GL2-mediated brassinosteroid responses Nat. Plants, 2 (2015),p. 15195
    [5]
    Chen, J., Ding, J., Ouyang, Y. et al. Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 11436-11441
    [6]
    Chen, M., Liu, G., Yu, H. et al. Towards molecular design of rice plant architecture and grain quality Chin. Sci. Bull., 63 (2018),pp. 1276-1289
    [7]
    Chen, S., Yang, Y., Shi, W. et al. Plant Cell, 20 (2008),pp. 1850-1861
    [8]
    Cheng, S.-H., Zhuang, J.-Y., Fan, Y.-Y. et al. Progress in research and development on hybrid rice: a super-domesticate in China Ann. Bot., 100 (2007),pp. 959-966
    [9]
    Cheng, S., Liao, X., Min, S. China's super rice research: background, goals and issues China Rice, 1 (1998),pp. 3-5
    [10]
    Deng, Y., Zhai, K., Xie, Z. et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance Science, 355 (2017),pp. 962-965
    [11]
    Du, B., Zhang, W., Liu, B. et al. Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 22163-22168
    [12]
    Duan, P., Ni, S., Wang, J. et al. Nat. Plants, 2 (2015),p. 15203
    [13]
    Etsuko, I., Natsuko, I., Sota, F. et al. Plant J., 65 (2011),pp. 359-367
    [14]
    Falconer, D.S., Mackay, T.F.C.
    [15]
    Fan, C., Xing, Y., Mao, H. et al. Theor. Appl. Genet., 112 (2006),pp. 1164-1171
    [16]
    Fan, C., Yu, S., Wang, C. et al. Theor. Appl. Genet., 118 (2009),pp. 465-472
    [17]
    Fischer, R.A., Byerlee, D., Edmeades, G. Crop yields and global food security: will yield increase continue to feed the world? Australian Centre for International Agricultural Research, Canberra (2014)
    [18]
    Fujii, S., Toriyama, K. Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 9513-9518
    [19]
    Gao, Z., Zeng, D., Cheng, F. et al. J. Integr. Plant Biol., 53 (2011),pp. 756-765
    [20]
    Gao, Z., Zeng, D., Cui, X. et al. Sci. China C Life Sci., 46 (2003),pp. 661-668
    [21]
    Greene, G.H., Dong, X. To grow and to defend Science, 361 (2018),pp. 976-977
    [22]
    Guo, J., Xu, C., Wu, D. et al. Nat. Genet., 50 (2018),pp. 297-306
    [23]
    Guo, J., Xu, X., Li, W. et al. Sci. Rep., 6 (2016),p. 26878
    [24]
    He, H., Yuan, S. Analyses of plant character in Hubei Photoperiodsensitive Genie Male-sterile Rice (HPGMR) under different light and temperature conditions Hybrid Rice, 5 (1989),pp. 42-44
    [25]
    Hefferon, K.L. Nutritionally enhanced food crops; progress and perspectives Int. J. Mol. Sci., 16 (2015),pp. 3895-3914
    [26]
    Hu, B., Wang, W., Ou, S. et al. Nat. Genet., 47 (2015),pp. 834-838
    [27]
    Hu, H., Dai, M., Yao, J. et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 12987-12992
    [28]
    Hu, J., Wang, K., Huang, W. et al. The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162 Plant Cell, 24 (2012),pp. 109-122
    [29]
    Hu, J., Wang, Y., Fang, Y. et al. Mol. Plant, 8 (2015),pp. 1455-1465
    [30]
    Hu, K., Cao, J., Zhang, J. et al. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement Nat. Plants, 3 (2017),p. 17009
    [31]
    Hu, L., Wu, Y., Wu, D. et al. The coiled-coil and nucleotide binding domains of BROWN PLANTHOPPER RESISTANCE14 function in signaling and resistance against planthopper in rice Plant Cell, 29 (2017),pp. 3157-3185
    [32]
    Hu, Z.X., Tian, Y., Xu, Q.S. Review of extension and analysis on current status of hybrid rice in China Hybrid Rice, 31 (2016),pp. 1-8
    [33]
    Huang, J.-Z., E, Z.-G., Zhang, H.-L. et al. Workable male sterility systems for hybrid rice: genetics, biochemistry, molecular biology, and utilization Rice, 7 (2014),p. 13
    [34]
    Huang, W., Yu, C., Hu, J. et al. Pentatricopeptide-repeat family protein RF6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 14984-14989
    [35]
    Huang, X., Yang, S., Gong, J. et al. Genomic architecture of heterosis for yield traits in rice Nature, 537 (2016),pp. 629-633
    [36]
    Huang, X., Yang, S., Gong, J. et al. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis Nat. Commun., 6 (2015),p. 6258
    [37]
    Janick, J.
    [38]
    Jiang, Y., Bao, L., Jeong, S.Y. et al. XIAO is involved in the control of organ size by contributing to the regulation of signaling and homeostasis of brassinosteroids and cell cycling in rice Plant J., 70 (2012),pp. 398-408
    [39]
    Jiao, Y., Wang, Y., Xue, D. et al. Nat. Genet., 42 (2010),pp. 541-544
    [40]
    Jones, J.W. Hybrid vigor in rice J. Am. Soc. Agron., 18 (1926),pp. 423-428
    [41]
    Kearsey, M.J. The principles of QTL analysis (a minimal mathematics approach) J. Exp. Bot., 49 (1998),pp. 1619-1623
    [42]
    Khush, G.S., Peng, S.
    [43]
    Kubo, T., Takashi, T., Ashikari, M. et al. Mol. Plant, 9 (2016),pp. 221-232
    [44]
    Li, J., Xin, Y., Yuan, L.
    [45]
    Li, J., Zhang, H., Si, X. et al. J. Genet. Genomics, 44 (2017),pp. 465-468
    [46]
    Li, Q., Zhang, D., Chen, M. et al. J. Genet. Genomics, 43 (2016),pp. 415-419
    [47]
    Li, S., Tian, Y., Wu, K. et al. Modulating plant growth–metabolism coordination for sustainable agriculture Nature, 560 (2018),pp. 595-600
    [48]
    Li, W., Zhu, Z., Chern, M. et al. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance Cell, 170 (2017),pp. 114-126
    [49]
    Li, X., Zhou, W., Ren, Y. et al. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing J. Genet. Genomics, 44 (2017),pp. 175-178
    [50]
    Li, X.-M., Chao, D.-Y., Wu, Y. et al. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice Nat. Genet., 47 (2015),pp. 827-833
    [51]
    Li, Y., Fan, C., Xing, Y. et al. Nat. Genet., 43 (2011),pp. 1266-1269
    [52]
    Li, Y., Fan, C., Xing, Y. et al. Nat. Genet., 46 (2014),pp. 398-404
    [53]
    Li, Y., Xiao, J., Chen, L. et al. Rice functional genomics research: past decade and future Mol. Plant, 11 (2018),pp. 359-380
    [54]
    Lin, S.C., Yuan, L.P.
    [55]
    Liu, C., Ou, S., Mao, B. et al. Nat. Commun., 9 (2018),p. 3302
    [56]
    Liu, L., Tong, H., Xiao, Y. et al. Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 11102-11107
    [57]
    Liu, Y., Wu, H., Chen, H. et al. A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice Nat. Biotechnol., 33 (2015),pp. 301-305
    [58]
    Long, Y., Zhao, L., Niu, B. et al. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 18871-18876
    [59]
    Lu, Y., Ye, X., Guo, R. et al. Genome-wide targeted mutagenesis in rice using the CRISPR/Cas9 system Mol. Plant, 10 (2017),pp. 1242-1245
    [60]
    Lu, Y., Zhu, J.-K. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system Mol. Plant, 10 (2017),pp. 523-525
    [61]
    Lu, Z., Yu, H., Xiong, G. et al. Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant architecture Plant Cell, 25 (2013),pp. 3743-3759
    [62]
    Luo, D., Xu, H., Liu, Z. et al. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice Nat. Genet., 45 (2013),pp. 573-577
    [63]
    Luo, J., Liu, H., Zhou, T. et al. Plant Cell, 25 (2013),pp. 3360-3376
    [64]
    Luo, X., Qiu, Z., Li, R. Pei'ai 64S, a dual purpose sterile line whose sterility is induced by low critical temperature Hybrid Rice, 1 (1992),pp. 27-29
    [65]
    Ma, G.H.
    [66]
    Ma, Y., Dai, X., Xu, Y. et al. Cell, 160 (2015),pp. 1209-1221
    [67]
    Mao, H., Sun, S., Yao, J. et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 19579-19584
    [68]
    Melchinger, A.E., Gumber, R.K.
    [69]
    Meng, X., Yu, H., Zhang, Y. et al. Construction of a genome-wide mutant library in rice using CRISPR/Cas9 Mol. Plant, 10 (2017),pp. 1238-1241
    [70]
    Miura, K., Ikeda, M., Matsubara, A. et al. Nat. Genet., 42 (2010),pp. 545-549
    [71]
    Mizuta, Y., Harushima, Y., Kurata, N. Rice pollen hybrid incompatibility caused by reciprocal gene loss of duplicated genes Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 20417-20422
    [72]
    Peleman, J.D., van der Voort, J.R. Breeding by design Trends Plant Sci., 8 (2003),pp. 330-334
    [73]
    Peng, B., Kong, H., Li, Y. et al. Nat. Commun., 5 (2014),p. 4847
    [74]
    Qi, P., Lin, Y.-S., Song, X.-J. et al. Cell Res., 22 (2012),pp. 1666-1680
    [75]
    Qian, Q., Guo, L., Smith, S.M. et al. Breeding high-yield superior quality hybrid super rice by rational design Natl. Sci. Rev., 3 (2016),pp. 283-294
    [76]
    Qian, Q., Guo, L., Zeng, D.
    [77]
    Ren, G.J., Yan, L.A., Xie, H.A. Chin. Sci. Bull., 61 (2016),pp. 3748-3760
    [78]
    Ren, Z.-H., Gao, J.-P., Li, L.-G. et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter Nat. Genet., 37 (2005),pp. 1141-1146
    [79]
    Shen, J.H.
    [80]
    Shi, M. Sci. Agric. Sin., 2 (1985),pp. 44-48
    [81]
    Shi, M., Deng, J. Acta Genetica Sinica, 13 (1986),pp. 107-112
    [82]
    Si, H.M., Liu, W.Z., Fu, Y.P. et al. Current situation and suggestions for development of two-line hybrid rice in China Chin. J. Rice Sci., 25 (2011),pp. 544-552
    [83]
    Si, L., Chen, J., Huang, X. et al. Nat. Genet., 48 (2016),pp. 447-456
    [84]
    Song, X.-J., Huang, W., Shi, M. et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase Nat. Genet., 39 (2007),pp. 623-630
    [85]
    Song, X., Lu, Z., Yu, H. et al. IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice Cell Res., 27 (2017),pp. 1128-1141
    [86]
    Song, X.J., Kuroha, T., Ayano, M. et al. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 76-81
    [87]
    Sun, H., Qian, Q., Wu, K. et al. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice Nat. Genet., 46 (2014),pp. 652-656
    [88]
    Takano-Kai, N., Jiang, H., Kubo, T. et al. Genetics, 182 (2009),pp. 1323-1334
    [89]
    Tan, Y.F., Li, J.X., Yu, S.B. et al. The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63 Theor. Appl. Genet., 99 (1999),pp. 642-648
    [90]
    Tang, H., Luo, D., Zhou, D. et al. Mol. Plant, 7 (2014),pp. 1497-1500
    [91]
    Tang, H., Zheng, X., Li, C. et al. Multi-step formation, evolution, and functionalization of new cytoplasmic male sterility genes in the plant mitochondrial genomes Cell Res., 27 (2017),pp. 130-146
    [92]
    Tian, Z., Qian, Q., Liu, Q. et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 21760-21765
    [93]
    Toshiyuki, K., Shozo, O., Nobuhiko, M. et al. Plant J., 37 (2004),pp. 315-325
    [94]
    Wang, B., Smith, S.M., Li, J. Genetic regulation of shoot architecture Annu. Rev. Plant Biol., 69 (2018),pp. 437-468
    [95]
    Wang, E., Wang, J., Zhu, X. et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication Nat. Genet., 40 (2008),pp. 1370-1374
    [96]
    Wang, J., Yu, H., Xiong, G. et al. Tissue-specific ubiquitination by IPA1 INTERACTING PROTEIN1 modulates IPA1 protein levels to regulate plant architecture in rice Plant Cell, 29 (2017),pp. 697-707
    [97]
    Wang, J., Zhou, L., Shi, H. et al. A single transcription factor promotes both yield and immunity in rice Science, 361 (2018),pp. 1026-1028
    [98]
    Wang, K., Peng, X., Ji, Y. et al. Gene, protein, and network of male sterility in rice Front. Plant Sci., 4 (2013),p. 92
    [99]
    Wang, Q., Liu, Y., He, J. et al. Nat. Commun., 5 (2014),p. 4768
    [100]
    Wang, Q., Nian, J., Xie, X. et al. Nat. Commun., 9 (2018),p. 735
    [101]
    Wang, S., Li, S., Liu, Q. et al. Nat. Genet., 47 (2015),pp. 949-954
    [102]
    Wang, S., Wu, K., Qian, Q. et al. Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield Cell Res., 27 (2017),pp. 1142-1156
    [103]
    Wang, S., Wu, K., Yuan, Q. et al. Nat. Genet., 44 (2012),pp. 950-954
    [104]
    Wang, S.L., Xu, K. Hybrid Rice, 3 (1996),pp. 1-4
    [105]
    Wang, W., Hu, B., Yuan, D. et al. Plant Cell, 30 (2018),pp. 638-651
    [106]
    Wang, Y., Xiong, G., Hu, J. et al. Nat. Genet., 47 (2015),pp. 944-948
    [107]
    Wang, Y., Xue, Y., Li, J. Towards molecular breeding and improvement of rice in China Trends Plant Sci., 10 (2005),pp. 610-614
    [108]
    Wang, Z., Zou, Y., Li, X. et al. Cytoplasmic male sterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing Plant Cell, 18 (2006),pp. 676-687
    [109]
    Wang, Z.Y., Wu, Z.L., Xing, Y.Y. et al. Nucleic Acids Res., 18 (1990),p. 5898
    [110]
    Wei, X., Xu, J., Guo, H. et al. Plant Physiol., 153 (2010),pp. 1747-1758
    [111]
    Weng, J., Gu, S., Wan, X. et al. Cell Res., 18 (2008),pp. 1199-1209
    [112]
    Weng, X., Wang, L., Wang, J. et al. Plant Physiol., 164 (2014),pp. 735-747
    [113]
    Xie, H., Zheng, J., Zhang, S. Rice breeding for the hybrid combination of Shanyou 63 and its restorer line Minghui 63 Fujian J. Agric. Sci., 2 (1987),pp. 32-38
    [114]
    Xie, Y., Niu, B., Long, Y. et al. J. Integr. Plant Biol., 59 (2017),pp. 669-679
    [115]
    Xu, F., Fang, J., Ou, S. et al. Plant Cell Environ., 38 (2015),pp. 800-811
    [116]
    Xu, R., Yang, Y., Qin, R. et al. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice J. Genet. Genomics, 43 (2016),pp. 529-532
    [117]
    Xue, W., Xing, Y., Weng, X. et al. Nat. Genet., 40 (2008),pp. 761-767
    [118]
    Yamagata, Y., Yamamoto, E., Aya, K. et al. Mitochondrial gene in the nuclear genome induces reproductive barrier in rice Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 1494-1499
    [119]
    Yan, W.-H., Wang, P., Chen, H.-X. et al. Mol. Plant, 4 (2011),pp. 319-330
    [120]
    Yang, J., Zhao, X., Cheng, K. et al. A killer-protector system regulates both hybrid sterility and segregation distortion in rice Science, 337 (2012),pp. 1336-1340
    [121]
    Yang, S.H., Cheng, B.Y., Shen, W.F. et al. Progress of application and breeding on two-line hybrid rice in China Hybrid Rice, 24 (2009),pp. 5-9
    [122]
    Yin, K., Gao, C., Qiu, J.-L. Progress and prospects in plant genome editing Nat. Plants, 3 (2017),p. 17107
    [123]
    Yu, Y., Tang, T., Qian, Q. et al. Independent losses of function in a polyphenol oxidase in rice: differentiation in grain discoloration between subspecies and the role of positive selection under domestication Plant Cell, 20 (2008),pp. 2946-2959
    [124]
    Yu, Y., Zhao, Z., Shi, Y. et al. Genetics, 203 (2016),pp. 1439-1451
    [125]
    Yuan, L.P. Chin. Sci. Bull., 4 (1966),p. 322
    [126]
    Yuan, L.P. The execution and theory of developing hybrid rice Chin. Agric. Sci., 1 (1977),pp. 27-31
    [127]
    Yuan, L.P., Virmani, S.S.
    [128]
    Zeng, D., Tian, Z., Rao, Y. et al. Rational design of high-yield and superior-quality rice Nat. Plants, 3 (2017),p. 17031
    [129]
    Zhang, G., Cheng, Z., Zhang, X. et al. Genome, 54 (2011),pp. 448-459
    [130]
    Zhang, H., Wang, S. Curr. Opin. Plant Biol., 16 (2013),pp. 188-195
    [131]
    Zhang, L., Yu, H., Ma, B. et al. Nat. Commun., 8 (2017),p. 14789
    [132]
    Zhang, X., Wang, J., Huang, J. et al. Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 21534-21539
    [133]
    Zhang, Y., Li, D., Zhang, D. et al. Plant J., 94 (2018),pp. 857-866
    [134]
    Zhao, D.-S., Li, Q.-F., Zhang, C.-Q. et al. Nat. Commun., 9 (2018),p. 1240
    [135]
    Zhou, H., Wang, L., Liu, G. et al. Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice Proc. Natl. Acad. Sci. U. S. A., 113 (2016),pp. 12844-12849
    [136]
    Zhou, Y., Miao, J., Gu, H. et al. Genetics, 201 (2015),pp. 1591-1599
    [137]
    Zhu, Y. Fifty years of hybrid rice research in China Chin. Sci. Bull., 61 (2016),pp. 3740-3747
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (186) PDF downloads (10) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return