[1] |
Andersson, L. Domestic animals as models for biomedical research Ups. J. Med. Sci., 121 (2016),pp. 1-11
|
[2] |
Bischoff, S.R., Tsai, S., Hardison, N. et al. Characterization of conserved and nonconserved imprinted genes in swine Biol. Reprod., 81 (2009),pp. 906-920
|
[3] |
Bläker, H., Funke, B., Hausser, I. et al. Pathology of the large intestine in patients with vascular type Ehlers-Danlos syndrome Virchows Arch., 450 (2007),pp. 713-717
|
[4] |
Bouzakri, K., Zachrisson, A., Al-Khalili, L. et al. siRNA-based gene silencing reveals specialized roles of IRS-1/Akt2 and IRS-2/Akt1 in glucose and lipid metabolism in human skeletal muscle Cell Metabol., 4 (2006),pp. 89-96
|
[5] |
Deng, Q., Ramskold, D., Reinius, B. et al. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells Science, 343 (2014),pp. 193-196
|
[6] |
Fang, M., Larson, G., Ribeiro, H.S. et al. Contrasting mode of evolution at a coat color locus in wild and domestic pigs PLoS Genet., 5 (2009)
|
[7] |
Ghazanfar, S., Vuocolo, T., Morrison, J.L. et al. Gene expression allelic imbalance in ovine brown adipose tissue impacts energy homeostasis PLoS One, 12 (2017)
|
[8] |
Huang, X., Charbeneau, R.A., Fu, Y. et al. Resistance to diet-induced obesity and improved insulin sensitivity in mice with a regulator of G protein signaling-insensitive G184S Gnai2 allele Diabetes, 57 (2008),pp. 77-85
|
[9] |
Kijas, J.M., Moller, M., Plastow, G. et al. A frameshift mutation in MC1R and a high frequency of somatic reversions cause black spotting in pigs Genetics, 158 (2001),pp. 779-785
|
[10] |
Larson, G., Dobney, K., Albarella, U. et al. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication Science, 307 (2005),pp. 1618-1621
|
[11] |
Magee, D.A., Spillane, C., Berkowicz, E.W. et al. Imprinted loci in domestic livestock species as epigenomic targets for artificial selection of complex traits Anim. Genet., 45 (2014),pp. 25-39
|
[12] |
Maroilley, T., Lemonnier, G., Lecardonnel, J. et al. Deciphering the genetic regulation of peripheral blood transcriptome in pigs through expression genome-wide association study and allele-specific expression analysis BMC Genomics, 18 (2017),p. 967
|
[13] |
Osswald, C., Baumgarten, K., Stümpel, F. et al. Mol. Cell. Biol., 25 (2005),pp. 78-87
|
[14] |
Pastinen, T. Genome-wide allele-specific analysis: insights into regulatory variation Nat. Rev. Genet., 11 (2010),pp. 533-538
|
[15] |
Price, E.O. Behavioral development in animals undergoing domestication Appl. Anim. Behav. Sci., 65 (1999),pp. 245-271
|
[16] |
Reddy, T.E., Gertz, J., Pauli, F. et al. Effects of sequence variation on differential allelic transcription factor occupancy and gene expression Genome Res., 22 (2012),pp. 860-869
|
[17] |
Ren, J., Duan, Y., Qiao, R. et al. PLoS Genet., 7 (2011)
|
[18] |
Romanel, A., Lago, S., Prandi, D. et al. ASEQ: fast allele-specific studies from next-generation sequencing data BMC Med. Genomics, 8 (2015),p. 9
|
[19] |
Veyhl, M., Keller, T., Gorboulev, V. et al. Am. J. Physiol. Renal. Physiol., 291 (2006),pp. F1213-F1223
|
[20] |
Wittkopp, P.J., Haerum, B.K., Clark, A.G. Nature, 430 (2004),pp. 85-88
|
[21] |
Wray, G.A. Nat. Rev. Genet., 8 (2007),pp. 206-216
|
[22] |
Yang, Y., Tang, Z., Fan, X. et al. Transcriptome analysis revealed chimeric RNAs, single nucleotide polymorphisms and allele-specific expression in porcine prenatal skeletal muscle Sci. Rep., 6 (2016),p. 29039
|
[23] |
Zhu, Y., Li, W., Yang, B. et al. Signatures of selection and interspecies introgression in the genome of Chinese domestic pigs Genome Biol. Evol., 9 (2017),pp. 2592-2603
|