5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 11
Nov.  2018
Turn off MathJax
Article Contents

Conservation genetics and genomics of threatened vertebrates in China

doi: 10.1016/j.jgg.2018.09.005
More Information
  • Corresponding author: E-mail address: weifw@ioz.ac.cn (Fuwen Wei)
  • Received Date: 2018-07-13
  • Accepted Date: 2018-09-08
  • Rev Recd Date: 2018-09-06
  • Available Online: 2018-11-05
  • Publish Date: 2018-11-20
  • Conservation genetics and genomics are two independent disciplines that focus on using new techniques in genetics and genomics to solve problems in conservation biology. During the past two decades, conservation genetics and genomics have experienced rapid progress. Here, we summarize the research advances in the conservation genetics and genomics of threatened vertebrates (e.g., carnivorans, primates, ungulates, cetaceans, avians, amphibians and reptiles) in China. First, we introduce the concepts of conservation genetics and genomics and their development. Second, we review the recent advances in conservation genetics research, including noninvasive genetics and landscape genetics. Third, we summarize the progress in conservation genomics research, which mainly focuses on resolving genetic problems relevant to conservation such as genetic diversity, genetic structure, demographic history, and genomic evolution and adaptation. Finally, we discuss the future directions of conservation genetics and genomics.
  • loading
  • [1]
    Ai, H., Fang, X., Yang, B. et al. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing Nat. Genet., 47 (2015),pp. 217-225
    [2]
    Allendorf, F.W., Hohenlohe, P.A., Luikart, G. Genomics and the future of conservation genetics Nat. Rev. Genet., 11 (2010),pp. 697-709
    [3]
    Amaral, A.R., Beheregaray, L.B., Bilgmann, K. et al. PLoS One, 7 (2012)
    [4]
    Avise, J. Perspective: conservation genetics enters the genomics era. 2009 Conserv. Genet., 11 (2010),pp. 665-669
    [5]
    Behjati, S., Tarpey, P.S. What is next generation sequencing? Arch. Dis. Child. Educ. Pract. Ed., 98 (2013),pp. 236-238
    [6]
    Berg, P.R., Jentoft, S., Star, B. et al. Genome Biol. Evol., 7 (2015),pp. 1644-1663
    [7]
    Bonnel, M.L., Selander, R.K. Elephant seals: genetic variation and near extinction Science, 184 (1974),pp. 908-909
    [8]
    Borthakur, U., Barman, R.D., Das, C. et al. Eur. J. Wildl. Res., 57 (2011),pp. 603-613
    [9]
    Burton, J.N., Adey, A., Patwardhan, R.P. et al. Nat. Biotechnol., 31 (2013),pp. 1119-1125
    [10]
    Cai, Q., Qian, X., Lang, Y. et al. Genome Biol., 14 (2013),p. R29
    [11]
    Cho, Y.S., Hu, L., Hou, H. et al. The tiger genome and comparative analysis with lion and snow leopard genomes Nat. Commun., 4 (2013),p. 2433
    [12]
    Christin, P.A., Weinreich, D.M., Besnard, G. Causes and evolutionary significance of genetic convergence Trends Genet., 26 (2010),pp. 400-405
    [13]
    David, H.R., Richard, F. Correlation between fitness and genetic diversity Conserv. Biol., 17 (2003),pp. 230-237
    [14]
    Frankel, O., Soulé, M.E.
    [15]
    Frankham, R. Genetics and extinction Biol. Conserv., 126 (2005),pp. 131-140
    [16]
    Frankham, R. Challenges and opportunities of genetic approaches to biological conservation Biol. Conserv., 143 (2010),pp. 1919-1927
    [17]
    Frankham, R., Ballou, J.D., Briscoe, D.A.
    [18]
    Ge, R.L., Cai, Q., Shen, Y.Y. et al. Draft genome sequence of the Tibetan antelope Nat. Commun., 4 (2013),p. 1858
    [19]
    Gutenkunst, R.N., Hernandez, R.D., Williamson, S.H. et al. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data PLoS Genet., 5 (2009)
    [20]
    Hagen, S.B., Kopatz, A., Aspi, J. et al. Evidence of rapid change in genetic structure and diversity during range expansion in a recovering large terrestrial carnivore Proc. R. Soc. B, 282 (2015)
    [21]
    Hausknecht, R., Bayerl, H., Gula, R. et al. Application of quantitative real-time polymerase chain reaction for noninvasive genetic monitoring J. Wildl. Manag., 74 (2010),pp. 1904-1910
    [22]
    Hoffmann, A.A., Sgrò, C.M. Climate change and evolutionary adaptation Nature, 470 (2011),p. 479
    [23]
    Holderegger, R., Wagner, H.H. Landscape genetics Bioscience, 58 (2008),pp. 199-207
    [24]
    Hu, J.C.
    [25]
    Hu, Y., Qi, D., Wang, H. et al. Genetic evidence of recent population contraction in the southernmost population of giant pandas Genetica, 138 (2010),pp. 1297-1306
    [26]
    Hu, Y., Zhan, X., Qi, D. et al. Spatial genetic structure and dispersal of giant pandas on a mountain-range scale Conserv. Genet., 11 (2010),pp. 2145-2155
    [27]
    Hu, Y., Nie, Y., Wei, W. et al. Inbreeding and inbreeding avoidance in wild giant pandas Mol. Ecol., 26 (2017),pp. 5793-5806
    [28]
    Hu, Y., Wu, Q., Ma, S. et al. Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas Proc. Natl. Acad. Sci. U. S. A., 114 (2017),pp. 1081-1086
    [29]
    Jiao, Y., Peluso, P., Shi, J. et al. Improved maize reference genome with single-molecule technologies Nature, 546 (2017),pp. 524-527
    [30]
    Joost, S., Bonin, A., Bruford, M.W. et al. A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation Mol. Ecol., 16 (2007),pp. 3955-3969
    [31]
    Kim, J., Farré, M., Auvil, L. et al. Reconstruction and evolutionary history of eutherian chromosomes Proc. Natl. Acad. Sci. U. S. A., 114 (2017),pp. e5379-e5388
    [32]
    Kohn, M.H., Murphy, W.J., Ostrander, E.A. et al. Genomics and conservation genetics Trends Ecol. Evol., 21 (2006),pp. 629-637
    [33]
    Kronenberg, Z.N., Fiddes, I.T., Gordon, D. et al. High-resolution comparative analysis of great ape genomes Science, 360 (2018)
    [34]
    Leamy, L.J., Lee, C.R., Song, Q. et al. Ecol. Evol., 6 (2016),pp. 6332-6344
    [35]
    Lee, H., Gurtowski, J., Yoo, S. et al. Third-generation sequencing and the future of genomics BioRxiv (2016)
    [36]
    Li, H., Durbin, R. Inference of human population history from individual whole-genome sequences Nature, 475 (2011),p. 493
    [37]
    Li, R., Fan, W., Tian, G. et al. Nature, 463 (2010),pp. 311-317
    [38]
    Li, M., Tian, S., Jin, L. et al. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars Nat. Genet., 45 (2013),pp. 1431-1438
    [39]
    Ling, H.Q., Ma, B., Shi, X. et al. Nature, 557 (2018),pp. 424-428
    [40]
    Liu, Z., Wang, B., Nadler, T. et al. Relatively recent evolution of pelage coloration in Colobinae: phylogeny and phylogeography of three closely related langur species PloS One, 8 (2013)
    [41]
    Liu, S., Lorenzen, E.D., Fumagalli, M. et al. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears Cell, 157 (2014),pp. 785-794
    [42]
    Lu, Z., Johnson, W.E., Menotti-Raymond, M. et al. Patterns of genetic diversity in remaining giant panda populations Conserv. Biol., 15 (2001),pp. 1596-1607
    [43]
    Luikart, G., England, P.R., Tallmon, D. et al. The power and promise of population genomics: from genotyping to genome typing Nat. Rev. Genet., 4 (2003),pp. 981-994
    [44]
    Ma, T., Hu, Y., Russo, I. et al. Walking in a heterogeneous landscape: dispersal, gene-flow and conservation implications for the giant panda in the Qinling Mountains Evol. Appl. (2018)
    [45]
    Manel, S., Holderegger, R. Ten years of landscape genetics Trends Ecol. Evol., 28 (2013),pp. 614-621
    [46]
    Manel, S., Schwartz, M.K., Luikart, G. et al. Landscape genetics: combining landscape ecology and population genetics Trends Ecol. Evol., 18 (2003),pp. 189-197
    [47]
    Manel, S., Joost, S., Epperson, B.K. et al. Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field Mol. Ecol., 19 (2010),pp. 3760-3772
    [48]
    Manthey, J.D., Moyle, R.G. Mol. Ecol., 24 (2015),pp. 3628-3638
    [49]
    Mendez, M., Subramaniam, A., Collins, T. et al. Molecular ecology meets remote sensing: environmental drivers to population structure of humpback dolphins in the Western Indian Ocean Heredity, 107 (2011),p. 349
    [50]
    Meyerhof, W., Batram, C., Kuhn, C. et al. Chem. Senses, 35 (2010),pp. 157-170
    [51]
    Moritz, C. Strategies to protect biological diversity and the evolutionary processes that sustain it Syst. Biol., 51 (2002),pp. 238-254
    [52]
    Mullis, K.B., Faloona, F.A. Methods Enzymol., 155 (1987),pp. 335-350
    [53]
    O'brien, S.J., Wildt, D.E., Goldman, D. et al. The cheetah is depauperate in genetic variation Science, 221 (1983),pp. 459-462
    [54]
    Ouborg, N.J., Pertoldi, C., Loeschcke, V. et al. Conservation genetics in transition to conservation genomics Trends Genet., 26 (2010),pp. 177-187
    [55]
    Pendleton, M., Sebra, R., Pang, A.W. et al. Assembly and diploid architecture of an individual human genome via single-molecule technologies Nat. Methods, 12 (2015),pp. 780-786
    [56]
    Picelli, S., Faridani, O.R., Bjorklund, A.K. et al. Full-length RNA-seq from single cells using Smart-seq2 Nat. Protoc., 9 (2014),pp. 171-181
    [57]
    Pompanon, F., Bonin, A., Bellemain, E. et al. Genotyping errors: causes, consequences and solutions Nat. Rev. Genet., 6 (2005),p. 847
    [58]
    Qiu, Q., Zhang, G., Ma, T. et al. The yak genome and adaptation to life at high altitude Nat. Genet., 44 (2012),pp. 946-949
    [59]
    Qiu, Q., Wang, L., Wang, K. et al. Yak whole-genome resequencing reveals domestication signatures and prehistoric population expansions Nat. Commun., 6 (2015),p. 10283
    [60]
    Qu, Y., Zhao, H., Han, N. et al. Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau Nat. Commun., 4 (2013),p. 2071
    [61]
    Ralls, K., Brugger, K., Ballou, J. Inbreeding and juvenile mortality in small populations of ungulates Science, 206 (1979),pp. 1101-1103
    [62]
    Ryder, O.A. Conservation genomics: applying whole genome studies to species conservation efforts Cytogenet. Genome Res., 108 (2005),pp. 6-15
    [63]
    Saiki, R.K., Gelfand, D.H., Stoffel, S. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase Science, 239 (1988),pp. 487-491
    [64]
    Sanger, F., Coulson, A.R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase J. Mol. Biol., 94 (1975),pp. 441-448
    [65]
    Schaller, G.B., Hu, J.C., Pan, W.S. et al.
    [66]
    Schatz, M.C., Delcher, A.L., Salzberg, S.L. Assembly of large genomes using second-generation sequencing Genome Res., 20 (2010),pp. 1165-1173
    [67]
    Schiffels, S., Durbin, R. Inferring human population size and separation history from multiple genome sequences Nat. Genet., 46 (2014),pp. 919-925
    [68]
    Schlotterer, C. Hitchhiking mapping--functional genomics from the population genetics perspective Trends Genet., 19 (2003),pp. 32-38
    [69]
    Schonewald-Cox, C., Chambers, S., MacBryde, B. et al.
    [70]
    Shafer, A.B., Wolf, J.B., Alves, P.C. et al. Genomics and the challenging translation into conservation practice Trends Ecol. Evol., 30 (2015),pp. 78-87
    [71]
    Shan, L., Hu, Y., Wei, F. Opportunities and challenges of fecal DNA technology in molecular ecology researches Acta Theriol. Sin., 38 (2018),pp. 235-246
    [72]
    Shan, L., Wu, Q., Wang, L. et al. Lineage-specific evolution of bitter taste receptor genes in the giant and red pandas implies dietary adaptation Integr. Zool., 13 (2018),pp. 152-159
    [73]
    Sharon, D., Tilgner, H., Grubert, F. et al. A single-molecule long-read survey of the human transcriptome Nat. Biotechnol., 31 (2013),pp. 1009-1014
    [74]
    Steiner, C.C., Putnam, A.S., Hoeck, P.E. et al. Conservation genomics of threatened animal species Annu. Rev. Anim. Biosci., 1 (2013),pp. 261-281
    [75]
    Stern, D.L. The genetic causes of convergent evolution Nat. Rev. Genet., 14 (2013),p. 751
    [76]
    Storz, J.F. Causes of molecular convergence and parallelism in protein evolution Nat. Rev. Genet., 17 (2016),pp. 239-250
    [77]
    Sun, Y.B., Xiong, Z.J., Xiang, X.Y. et al. Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 1257-1262
    [78]
    Taberlet, P., Griffin, S., Goossens, B. et al. Reliable genotyping of samples with very low DNA quantities using PCR Nucleic Acids Res., 24 (1996),pp. 3189-3194
    [79]
    Taberlet, P., Waits, L.P., Luikart, G. Noninvasive genetic sampling: look before you leap Nat. Rev. Genet., 14 (1999),pp. 323-327
    [80]
    Wan, Q.H., Pan, S.K., Hu, L. et al. Genome analysis and signature discovery for diving and sensory properties of the endangered Chinese alligator Cell Res., 23 (2013),pp. 1091-1105
    [81]
    Wang, J., Wang, W., Li, R. et al. The diploid genome sequence of an Asian individual Nature, 456 (2008),pp. 60-65
    [82]
    Wang, D., Hu, Y., Ma, T. et al. Noninvasive genetics provides insights into the population size and genetic diversity of an Amur tiger population in China Integr. Zool., 11 (2016),pp. 16-24
    [83]
    Wei, F., Hu, Y., Zhu, L. et al. Black and white and read all over: the past, present and future of giant panda genetics Mol. Ecol., 21 (2012),pp. 5660-5674
    [84]
    Wei, F., Hu, Y., Yan, L. et al. Giant pandas are not an evolutionary cul-de-sac: evidence from multidisciplinary research Mol. Biol. Evol., 32 (2015),pp. 4-12
    [85]
    Wu, Q., Wang, Y., Ding, Y. et al. A natural communication system on genome evolution Sci. China Life Sci., 60 (2017),pp. 432-435
    [86]
    Yan, F., Lu, J., Zhang, B. et al. The Chinese giant salamander exemplifies the hidden extinction of cryptic species Curr. Biol., 28 (2018),pp. R590-R592
    [87]
    Yang, J., Jiang, Z. Conserv. Genet., 12 (2011),pp. 1457-1468
    [88]
    Yang, J., Jiang, Z., Zeng, Y. et al. Effect of anthropogenic landscape features on population genetic differentiation of Przewalski's gazelle: main role of human settlement PloS One, 6 (2011)
    [89]
    Yin, W., Wang, Z.J., Li, Q.Y. et al. Evolutionary trajectories of snake genes and genomes revealed by comparative analyses of five-pacer viper Nat. Commun., 7 (2016),p. 13107
    [90]
    Yu, L., Wang, G.D., Ruan, J. et al. Nat. Genet., 48 (2016),p. 947
    [91]
    Zhan, X., Li, M., Zhang, Z. et al. Molecular censusing doubles giant panda population estimate in a key nature reserve Curr. Biol., 16 (2006),pp. R451-R452
    [92]
    Zhan, X.J., Zhang, Z.J., Wu, H. et al. Molecular analysis of dispersal in giant pandas Mol. Ecol., 16 (2007),pp. 3792-3800
    [93]
    Zhan, X., Zheng, X., Bruford, M.W. et al. A new method for quantifying genotyping errors for noninvasive genetic studies Conserv. Genet., 11 (2010),pp. 1567-1571
    [94]
    Zhan, X., Pan, S., Wang, J. et al. Peregrine and saker falcon genome sequences provide insights into evolution of a predatory lifestyle Nat. Genet., 45 (2013),pp. 563-566
    [95]
    Zhang, J., Zhang, Y.P., Rosenberg, H.F. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey Nat. Genet., 30 (2002),pp. 411-415
    [96]
    Zhang, B., Li, M., Zhang, Z. et al. Genetic viability and population history of the giant panda, putting an end to the "evolutionary dead end"? Mol. Biol. Evol., 24 (2007),pp. 1801-1810
    [97]
    Zhang, F., Jiang, Z., Xu, A. et al. Recent geological events and intrinsic behavior influence the population genetic structure of the chiru and Tibetan gazelle on the Tibetan plateau PloS One, 8 (2013)
    [98]
    Zhang, G., Li, C., Li, Q. et al. Comparative genomics reveals insights into avian genome evolution and adaptation Science, 346 (2014),pp. 1311-1320
    [99]
    Zhao, T.B., Ning, H.X., Zhu, S.S. et al. Biochem. Biophys. Res. Commun., 316 (2004),pp. 565-572
    [100]
    Zhao, H., Yang, J.R., Xu, H. et al. Mol. Biol. Evol., 27 (2010),pp. 2669-2673
    [101]
    Zhao, S., Zheng, P., Dong, S. et al. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation Nat. Genet., 45 (2013),pp. 67-71
    [102]
    Zhou, X., Sun, F., Xu, S. et al. Baiji genomes reveal low genetic variability and new insights into secondary aquatic adaptations Nat. Commun., 4 (2013),p. 2708
    [103]
    Zhou, X., Wang, B., Pan, Q. et al. Whole-genome sequencing of the snub-nosed monkey provides insights into folivory and evolutionary history Nat. Genet., 46 (2014),pp. 1303-1310
    [104]
    Zhou, X., Meng, X., Liu, Z. et al. Population genomics reveals low genetic diversity and adaptation to hypoxia in snub-nosed monkeys Mol. Biol. Evol., 33 (2016),pp. 2670-2681
    [105]
    Zhou, X., Guang, X., Sun, D. et al. Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater Nat. Commun., 9 (2018),p. 1276
    [106]
    Zhu, L., Zhan, X., Wu, H. et al. Conservation implications of drastic reductions in the smallest and most isolated populations of giant pandas Conserv. Biol., 24 (2010),pp. 1299-1306
    [107]
    Zhu, L., Zhang, S., Gu, X. et al. Significant genetic boundaries and spatial dynamics of giant pandas occupying fragmented habitat across southwest China Mol. Ecol., 20 (2011),pp. 1122-1132
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (158) PDF downloads (9) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return