5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 10
Oct.  2018
Turn off MathJax
Article Contents

Genomic landscapes of Chinese sporadic autism spectrum disorders revealed by whole-genome sequencing

doi: 10.1016/j.jgg.2018.09.002
More Information
  • Autism spectrum disorder (ASD) is a neurodevelopmental disorder with considerable clinical and genetic heterogeneity. In this study, we identified all classes of genomic variants from whole-genome sequencing (WGS) dataset of 32 Chinese trios with ASD, including de novo mutations, inherited variants, copy number variants (CNVs) and genomic structural variants. A higher mutation rate (Poisson test, P < 2.2 × 10−16) in exonic (1.37 × 10−8) and 3′-UTR regions (1.42 × 10−8) was revealed in comparison with that of whole genome (1.05 × 10−8). Using an integrated model, we identified 87 potentially risk genes (P < 0.01) from 4832 genes harboring various rare deleterious variants, includingCHD8 and NRXN2, implying that the disorders may be in favor to multiple-hit. In particular, frequent rare inherited mutations of several microcephaly-associated genes (ASPM, WDR62, and ZNF335) were found in ASD. In chromosomal structure analyses, we found four de novo CNVs and one de novo chromosomal rearrangement event, including a de novo duplication of UBE3A-containing region at 15q11.2-q13.1, which causes Angelman syndrome and microcephaly, and a disrupted TNR due to de novo chromosomal translocation t(1; 5)(q25.1; q33.2). Taken together, our results suggest that abnormalities of centrosomal function and chromatin remodeling of the microcephaly-associated genes may be implicated in pathogenesis of ASD. Adoption of WGS as a new yet efficient technique to illustrate the full genetic spectrum in complex disorders, such as ASD, could provide novel insights into pathogenesis, diagnosis and treatment.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Abdelmoity, A.T., LePichon, J.B., Nyp, S.S. et al. 15q11.2 proximal imbalances associated with a diverse array of neuropsychiatric disorders and mild dysmorphic features J. Dev. Behav. Pediatr., 33 (2012),pp. 570-576
    [2]
    Abecasis, G.R., Auton, A., Brooks, L.D. et al. An integrated map of genetic variation from 1,092 human genomes Nature, 491 (2012),pp. 56-65
    [3]
    Abyzov, A., Urban, A.E., Snyder, M. et al. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing Genome Res., 21 (2011),pp. 974-984
    [4]
    Adzhubei, I.A., Schmidt, S., Peshkin, L. et al. A method and server for predicting damaging missense mutations Nat. Methods, 7 (2010),pp. 248-249
    [5]
    Benadiba, C., Magnani, D., Niquille, M. et al. The ciliogenic transcription factor RFX3 regulates early midline distribution of guidepost neurons required for corpus callosum development PLoS Genet., 8 (2012)
    [6]
    Bernier, R., Golzio, C., Xiong, B. et al. Cell, 158 (2014),pp. 263-276
    [7]
    Bibonne, A., Neant, I., Batut, J. et al. Biochim. Biophys. Acta, 1833 (2013),pp. 1665-1671
    [8]
    Bilguvar, K., Ozturk, A.K., Louvi, A. et al. Nature, 467 (2010),pp. 207-210
    [9]
    Borglum, A.D., Demontis, D., Grove, J. et al. Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci Mol. Psychiatr., 19 (2014),pp. 325-333
    [10]
    Brandler, W.M., Antaki, D., Gujral, M. et al. Am. J. Hum. Genet., 98 (2016),pp. 667-679
    [11]
    Busby, V., Goossens, S., Nowotny, P. et al. Alpha-T-catenin is expressed in human brain and interacts with the Wnt signaling pathway but is not responsible for linkage to chromosome 10 in Alzheimer's disease NeuroMolecular Med., 5 (2004),pp. 133-146
    [12]
    Chiang, D.Y., Getz, G., Jaffe, D.B. et al. High-resolution mapping of copy-number alterations with massively parallel sequencing Nat. Methods, 6 (2009),pp. 99-103
    [13]
    Christofolini, D.M., Meloni, V.A., Ramos, M.A. et al. Autistic disorder phenotype associated to a complex 15q intrachromosomal rearrangement Am. J. Med. Genet. B Neuropsychiatr. Genet., 159B (2012),pp. 823-828
    [14]
    Davydov, E.V., Goode, D.L., Sirota, M. et al. Identifying a high fraction of the human genome to be under selective constraint using GERP plus PLoS Comput. Biol., 6 (2010)
    [15]
    De Rubeis, S., He, X., Goldberg, A.P. et al. Synaptic, transcriptional and chromatin genes disrupted in autism Nature, 515 (2014),pp. 209-215
    [16]
    Della Monica, M., Lonardo, F., Faravelli, F. et al. Am. J. Med. Genet., 143A (2007),pp. 2733-2737
    [17]
    Ding, N., Zhou, H., Esteve, P.O. et al. Mediator links epigenetic silencing of neuronal gene expression with x-linked mental retardation Mol. Cell, 31 (2008),pp. 347-359
    [18]
    Drmanac, R., Sparks, A.B., Callow, M.J. et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays Science, 327 (2010),pp. 78-81
    [19]
    Dufresne, D., Hamdan, F.F., Rosenfeld, J.A. et al. J. Med. Genet., 49 (2012),pp. 451-454
    [20]
    Ebert, D.H., Greenberg, M.E. Activity-dependent neuronal signalling and autism spectrum disorder Nature, 493 (2013),pp. 327-337
    [21]
    Feng, J.J., Xu, X., Wang, W.P. et al. Pattern visual evoked potential performance in preterm preschoolers with average intelligence quotients Early Hum. Dev., 87 (2011),pp. 61-66
    [22]
    Fu, W.Q., O'Connor, T.D., Jun, G. et al. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants Nature, 493 (2013),pp. 216-220
    [23]
    Fujimori, A., Itoh, K., Goto, S. et al. Disruption of Aspm causes microcephaly with abnormal neuronal differentiation Brain Dev., 36 (2014),pp. 661-669
    [24]
    Girirajan, S., Dennis, M.Y., Baker, C. et al. Refinement and discovery of new hotspots of copy-number variation associated with autism spectrum disorder Am. J. Hum. Genet., 92 (2013),pp. 221-237
    [25]
    He, X., Sanders, S.J., Liu, L. et al. PLoS Genet., 9 (2013)
    [26]
    Iossifov, I., O'Roak, B.J., Sanders, S.J. et al. Nature, 515 (2014),pp. 216-221
    [27]
    Jiang, Y.H., Yuen, R.K., Jin, X. et al. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing Am. J. Hum. Genet., 93 (2013),pp. 249-263
    [28]
    Jin, Z.B., Li, Z., Liu, Z. et al. Biol. Rev. Camb. Philos. Soc., 93 (2018),pp. 1014-1031
    [29]
    Kong, A., Frigge, M.L., Masson, G. et al. Nature, 488 (2012),pp. 471-475
    [30]
    Krumm, N., O'Roak, B.J., Shendure, J. et al. Trends Neurosci., 37 (2014),pp. 95-105
    [31]
    Kumar, P., Henikoff, S., Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm Nat. Protoc., 4 (2009),pp. 1073-1082
    [32]
    Leblond, C.S., Heinrich, J., Delorme, R. et al. PLoS Genet., 8 (2012)
    [33]
    Li, H., Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform Bioinformatics, 25 (2009),pp. 1754-1760
    [34]
    Li, H., Handsaker, B., Wysoker, A. et al. The sequence alignment/map format and SAMtools Bioinformatics, 25 (2009),pp. 2078-2079
    [35]
    Li, J., Jiang, Y., Wang, T. et al. J. Med. Genet., 52 (2015),pp. 275-281
    [36]
    Lim, E.T., Raychaudhuri, S., Sanders, S.J. et al. Rare complete knockouts in humans: population distribution and significant role in autism spectrum disorders Neuron, 77 (2013),pp. 235-242
    [37]
    Matson, J.L., Shoemaker, M. Intellectual disability and its relationship to autism spectrum disorders Res. Dev. Disabil., 30 (2009),pp. 1107-1114
    [38]
    McKenna, A., Hanna, M., Banks, E. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data Genome Res., 20 (2010),pp. 1297-1303
    [39]
    Michaelson, J.J., Shi, Y., Gujral, M. et al. Cell, 151 (2012),pp. 1431-1442
    [40]
    Mullins, C., Fishell, G., Tsien, R.W. Unifying views of autism spectrum disorders: a consideration of autoregulatory feedback loops Neuron, 89 (2016),pp. 1131-1156
    [41]
    O'Roak, B.J., Vives, L., Fu, W. et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders Science, 338 (2012),pp. 1619-1622
    [42]
    Petersen, A.K., Ahmad, A., Shafiq, M. et al. Eur. J. Med. Genet., 56 (2013),pp. 118-122
    [43]
    RK, Yuen, C., Merico, D., Bookman, M. et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder Nat. Neurosci., 20 (2017),pp. 602-611
    [44]
    Rosti, R.O., Sadek, A.A., Vaux, K.K. et al. The genetic landscape of autism spectrum disorders Dev. Med. Child Neurol., 56 (2014),pp. 12-18
    [45]
    Saghatelyan, A., de Chevigny, A., Schachner, M. et al. Tenascin-R mediates activity-dependent recruitment of neuroblasts in the adult mouse forebrain Nat. Neurosci., 7 (2004),pp. 347-356
    [46]
    Schwarz, J.M., Rodelsperger, C., Schuelke, M. et al. MutationTaster evaluates disease-causing potential of sequence alterations Nat. Methods, 7 (2010),pp. 575-576
    [47]
    Stein, J.L., Parikshak, N.N., Geschwind, D.H. Rare inherited variation in autism: beginning to see the forest and a few trees Neuron, 77 (2013),pp. 209-211
    [48]
    Steinberg, J., Webber, C. The roles of FMRP-regulated genes in autism spectrum disorder: single- and multiple-hit genetic etiologies Am. J. Hum. Genet., 93 (2013),pp. 825-839
    [49]
    Stewart, L.R., Hall, A.L., Kang, S.H. et al. High frequency of known copy number abnormalities and maternal duplication 15q11-q13 in patients with combined schizophrenia and epilepsy BMC Med. Genet., 12 (2011),p. 154
    [50]
    Tammimies, K., Marshall, C.R., Walker, S. et al. Molecular diagnostic yield of chromosomal microarray analysis and whole-exome sequencing in children with autism spectrum disorder J. Am. Med. Assoc., 314 (2015),pp. 895-903
    [51]
    Tan, C., Del Gaudio, D., Dempsey, M. et al. Analysis of ASPM in an ethnically diverse cohort of 400 patient samples: perspectives of the molecular diagnostic laboratory Clin. Genet., 85 (2014),pp. 353-358
    [52]
    Toma, C., Torrico, B., Hervas, A. et al. Exome sequencing in multiplex autism families suggests a major role for heterozygous truncating mutations Mol. Psychiatr., 19 (2014),pp. 784-790
    [53]
    Turner, T.N., Coe, B.P., Dickel, D.E. et al. Cell, 171 (2017),pp. 710-722
    [54]
    Urraca, N., Cleary, J., Brewer, V. et al. The interstitial duplication 15q11.2-q13 syndrome includes autism, mild facial anomalies and a characteristic EEG signature Autism Res., 6 (2013),pp. 268-279
    [55]
    Vorstman, J.A.S., Parr, J.R., Moreno-De-Luca, D. et al. Autism genetics: opportunities and challenges for clinical translation Nat. Rev. Genet., 18 (2017),pp. 362-376
    [56]
    Wang, J., Mullighan, C.G., Easton, J. et al. CREST maps somatic structural variation in cancer genomes with base-pair resolution Nat. Methods, 8 (2011),pp. 652-654
    [57]
    Wang, K., Li, M., Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data Nucleic Acids Res., 38 (2010),p. e164
    [58]
    Weber, P., Bartsch, U., Rasband, M.N. et al. Mice deficient for tenascin-R display alterations of the extracellular matrix and decreased axonal conduction velocities in the CNS J. Neurosci., 19 (1999),pp. 4245-4262
    [59]
    Wilfert, A.B., Sulovari, A., Turner, T.N. et al. Genome Med., 9 (2017),p. 101
    [60]
    Winnepenninckx, B., Debacker, K., Ramsay, J. et al. Am. J. Hum. Genet., 80 (2007),pp. 221-231
    [61]
    Yang, Y.J., Baltus, A.E., Mathew, R.S. et al. Microcephaly gene links trithorax and REST/NRSF to control neural stem cell proliferation and differentiation Cell, 151 (2012),pp. 1097-1112
    [62]
    Yin, J., Schaaf, C.P. Autism genetics - an overview Prenat. Diagn., 37 (2017),pp. 14-30
    [63]
    Yu, T.W., Chahrour, M.H., Coulter, M.E. et al. Using whole-exome sequencing to identify inherited causes of autism Neuron, 77 (2013),pp. 259-273
    [64]
    Yu, T.W., Mochida, G.H., Tischfield, D.J. et al. Nat. Genet., 42 (2010),pp. 1015-1020
    [65]
    Yuen, R.K., Merico, D., Cao, H. et al. NPJ Genom. Med., 1 (2016),pp. 160271-1602710
    [66]
    Yuen, R.K., Thiruvahindrapuram, B., Merico, D. et al. Whole-genome sequencing of quartet families with autism spectrum disorder Nat. Med., 21 (2015),pp. 185-191
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (103) PDF downloads (4) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return